

PSIRP

Publish-Subscribe Internet Routing Paradigm
FP7-INFSO-IST-216173

DELIVERABLE D3.4

Integration and Demonstration Plan

Title of Contract Publish-Subscribe Internet Routing Paradigm
Acronym PSIRP
Contract Number FP7-INFSO-IST 216173
Start date of the project 1.1.2008
Duration 30 months, until 30.6.2010
Document Title: Integration and Demonstration Plan
Date of preparation 31.08.2009
Author(s) Dirk Trossen (BT) (editor), Janne Tuononen (NSNF),

Jimmy Kjällman (LMF), Borislava Gajic (RWTH), Dmitrij
Lagutin (HIIT), Somaya Arianfar (LMF), Walter Wong
(Unicamp), Mark Ain (HIIT) (editor)

Responsible of the deliverable Dirk Trossen (BT)
 Phone: +44 7918 711695
 Email: dirk.trossen@bt.com
Target Dissemination Level: PU
Status of the Document: Completed
Version 1.0
Document location http://www.psirp.org/deliverables/
Project web site http://www.psirp.org/

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 2(24)

Table of Contents

1 Introduction... 3
2 Node-level Integration.. 4

2.1 Current Node Architecture ...4
2.2 Status of Components ...5

2.2.1 Blackboard..5
2.2.2 Forwarding..6
2.2.3 Rendezvous..6
2.2.4 Network Attachment ...7
2.2.5 PLA...7
2.2.6 Topology Manager..7
2.2.7 Applications ..7

2.3 Integration and Improvement Plan...8
2.3.1 Blackboard Core Improvements ...8
2.3.2 PLA Integration ...8
2.3.3 Network Attachment Integration ...8
2.3.4 Transport and Caching Integration ...9
2.3.5 Application: Firefox Integration ...9

3 Network-level Integration .. 12
3.1 Current Network Architecture...12
3.2 Status of Components ...13

3.2.1 Forwarding Node ..13
3.2.2 Rendezvous Node ..13
3.2.3 ITF Node...14
3.2.4 Topology Management ...14

3.3 Integration Plan..15
3.3.1 Rendezvous Node Integration ..15
3.3.2 Forwarding Node Integration ..16

4 Demonstrators.. 17
4.1 Current Laboratory Demonstrator ..17

4.1.1 Demonstrator with the FUSE-based prototype ...17
4.1.2 NetFPGA demonstrator: UDP streaming over zFilter-based multicast19
4.1.3 Standalone Rendezvous Network Demonstrator..19
4.1.4 Planned demonstrations with Blackhawk v0.1..20

4.2 Planned Demonstrator at Essex University ...21
4.2.1 Infrastructure...21
4.2.2 Current Integration with PSIRP...21
4.2.3 Potential Usage ..22

5 Conclusions.. 23
6 References .. 24

This document has been produced in the context of the PSIRP Project. The PSIRP Project is part of the
European Community’s Seventh Framework Program for research and is as such funded by the
European Commission.

All information in this document is provided “as is” and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and
liability.

For the avoidance of all doubts, the European Commission has no liability in respect of this document,
which is merely representing the authors view.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 3(24)

1 Introduction
From the design phase of the project, the prototyping work is a major component in the
development of the architecture. While implementation work on different architectural
components started early in the project, integration of these components into a coherent
system prototype will gradually become the main focus for the remainder of the project.

This deliverable presents the current state of integration at the node level as well as the
network architecture. We base our presentation on the current PSIRP architecture that was
outlined in D2.3 [Tro2009]. The reader is referred to this deliverable for a deeper
understanding of the various components that we will present in the following.

The deliverable starts with the node architecture as outlined in D2.3. The status of work for
each of the components within that node architecture is presented followed by an outline of
our plans for integration of the various components. The nature of this integration, as opposed
to strictness of timing, is of critical emphasis as it takes place across various distributed
teams. As for general timing, we expect most of the presented integration work to take place
in the second half of 2009, reaching into 2010 – just in time for the final update of the system
architecture.

After the node architecture, we move on to the network architecture, based on D2.3, and
similarly outline the current status of the various components before presenting the plans for
integration. It is important to note that the status of the various network components is less
advanced than the node architecture itself, which is due to the ongoing design work in some
of the areas, such as for the inter-domain topology formation. Hence, we expect final
integration to take place towards the end of the project.

Apart from integration, the aspect of demonstration is also a part of this deliverable. PSIRP
clearly stated from the beginning that the application development is not the focus of our work.
However, demonstrating the ability of the architecture is still required. Our presented
demonstrators focus on this issue rather than the implementation of various applications. For
that, we outline a laboratory demonstrator for testing and demonstration purposes and
furthermore present an extension towards a campus-wide test bed that allows for
demonstrating, e.g., forwarding or rendezvous capabilities, but also enables testing of various
components. While the laboratory demonstrators are already available, based on the old as
well as the revised node architecture, the campus-wide demonstrator is currently under
development with an expectation of a growing functionality towards the end of 2009.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 4(24)

2 Node-level Integration
This first section describes the current and planned integration at the node level, based on the
current node architecture as outlined in D2.3 [Tro2009]. We start with a brief overview of the
current node architecture before outlining the status of the node components and the plans for
further integration.

2.1 Current Node Architecture
The current node architecture, which is described in more detail in deliverable D3.3
[Jok2009b], implements parts of the PSIRP service model and API presented in D2.3
[Tro2009]. It consists of the following pieces:

 A blackboard that implements the memory object model from D2.3 inside a node.
Conceptually, the blackboard is the place where data items are stored as publications
that can be subscribed to.

 An API for publishing data items to the blackboard, subscribing to them, and getting
notifications when new versions of them are published.

 Applications that can communicate with each other via the blackboard. This includes
helper applications that implement different functions of the PSIRP component wheel
(see Figure 2.1).

Figure 2.1 – PSIRP Component Wheel

In the Blackhawk prototype for FreeBSD, the blackboard is implemented as a kernel module,
as shown in Figure 2.2. It is integrated with the operating system's virtual memory system, i.e.,
publications in the blackboard correspond to virtual memory objects and pages. The API is
implemented as a library that communicates with the kernel module using system calls. It
provides functions for creating, publishing, and subscribing to publications. Notifications about
publish operations on the blackboard can be acquired via the kevent system of FreeBSD. In
addition, a file system view to the blackboard is provided which shows the blackboard's
contents as a hierarchy of scopes, publications, publication versions, and memory pages
(which all have their own RIds).

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 5(24)

Figure 2.2 – Node Architecture

As mentioned above, user space applications can use pub/sub-based inter-process
communication by publishing data to the blackboard, from where other processes can retrieve
the publications by subscribing to them. The component wheel functions (e.g., rendezvous
and topology management) are also implemented as applications. However, some parts of the
component wheel (e.g., forwarding) may also be implemented in the kernel space to achieve
better performance. As an example of helpers, we can look at the current version of the
Blackhawk prototype (Figure 2.2) that features three helpers:

 A scope helper takes care of instantiating, updating, and re-publishing scope
publications, i.e. data items that contain collections of RIds.

 A local-area rendezvous helper extends the blackboard model into the network It
provides local monitoring for publish/subscribe operations, and it advertises the locally
published publications to the local-area rendezvous node, used in the first version of
the prototype..

 A network I/O helper implements packet fragmentation/assembly in addition to
forwarding, using sockets for sending and receiving packets over links in the network.

o The rendezvous helper communicates with the network I/O module when
publication metadata or data needs to be sent into the network. In the reverse
direction, the network I/O helper dispatches received metadata to the
rendezvous helper.

2.2 Status of Components
This section outlines the status of the node components based on the node architecture,
presented in Figure 2.2.

2.2.1 Blackboard

As described in Section 2.1, the blackboard, responsible for node-internal publication
management, is implemented as a FreeBSD kernel module (named psfs). In the blackboard,

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 6(24)

publications correspond to memory objects, whose metadata point to version objects, whose
metadata then point to memory pages. A rendezvous structure, called a Publication Index
Table (PIT), maps Rendezvous identifiers (Rids) to the memory objects, version objects, and
memory pages. This hierarchy is currently exposed by the file system API, which allows
applications to access data content on these different levels. Sharing of identical pages
between different versions of a publication has been partially implemented.

A pub/sub library (libpsirp) allows programmers to create, publish, and subscribe to data on
the blackboard. The library is implemented in C and has wrappers for Python and Ruby,
however those in C and Python are currently much more developed. Using this API, data in
the blackboard can be accessed as arrays after creating a new or subscribing to an existing
data object. The subscribed data object can be written to, in which case the affected page is
first copied and then modified. The original version of the publication remains intact, and no
garbage collection has yet been implemented. The subscribed and modified data can also be
re-published, resulting in a new version of the publication. When a publication is updated, a
kevent is issued In addition to this functionality, the library provides various functions for
accessing publication metadata and for practical handling of binary PSIRP identifiers (e.g.,
hexadecimal format conversions).

A scope helper (scoped) in the user space assists the blackboard in creating and updating
publications that list the publications in a scope. Sub-scopes can be created under the root
scope, but currently not under other scopes.

At the time of writing, the implementation has some known limitations and bugs. The
publication size, number of publications in a scope, as well as the number of versions of a
publication are currently limited.

2.2.2 Forwarding

Basic zFilter-based forwarding (see [Jok2009a]) has been implemented into the prototype as
part of the network I/O helper application, making forwarding decisions by matching the
Forwarding identifiers (Fids) of outgoing packets with the static Link identifiers (Lids) that are
read from a configuration file and assigned to the interfaces. The prototype also supports
return-path collection into the forwarded packets. The collection operates by ORing the
incoming interface Link IDs to the return Fid field in the packet on each forwarding node.

In addition, the network I/O component handles the sending and receiving of packets within
broadcasted Ethernet frames through link-layer sockets. It also takes care of fragmentation,
that is, it splits large publications into multiple smaller packets to be sent and assembles data
from received packets into publications.

The network I/O module can communicate with the local rendezvous module (the status of
which is described below) through the node-local blackboard. However, due to the limitations
and stability issues of the current blackboard implementation, local socket-based IPC is used
as the default communication mechanism in the first prototype release.

2.2.3 Rendezvous

The network rendezvous mechanism integrated with the first prototype release is intended to
be used only in small LANs. It is not integrated with the other rendezvous node
implementation presented later in this document nor with the topology manager. The
implementation language of this rendezvous daemon is Python. In each node, the daemon
listens to publications appearing under the root scope and its sub-scopes, to publication
updates, and also to subscriptions that take place in the node. Whenever events like these
occur, the daemon initiates network pub/sub via the network I/O daemon. The daemon keeps
state for pending subscriptions initiated within the node itself and handles rendezvous signals
received from the network.

Moreover, nodes have a pre-configured FId pointing to a local rendezvous node. That node
runs the same daemon but stores metadata about publications published in other nodes,

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 7(24)

responds to metadata subscriptions, and dispatches data subscriptions to the original
publishers.

The current version has several limitations; it is only possible to publish and subscribe whole,
single-version publications, only the publish-before-subscribe case is supported and only one
publication can be received at a time.

2.2.4 Network Attachment

The network attachment daemon was written in Python as an independent software module
that has not been integrated with other components in the current prototype. It implements a
simple pub/sub-based framework for attachment point discovery, communication
bootstrapping, and node configuration. Instead of proper PSIRP SIds, RIds and FIds, this
version uses generic labels as message identifiers. It also establishes its own link-layer
connections and has an internal blackboard.

2.2.5 PLA

Packet Level Authentication (PLA) functionality has been implemented as a separate library,
which was used by the psirpd in the previous prototype to perform PLA operations. This library
supports packet verification and signature generation for multiple modes of operation,
including cases where the RId and SId are derived from a corresponding public key.
Additionally, it contains functionality for certificate creation and management at runtime.

2.2.6 Topology Manager

The Topology Management module maintains local connectivity information in the form of a
generic table containing information about an outgoing node’s links as row entries. Each link is
represented by its ID and type, but the link information can be extended with a set of link
related properties, e.g., throughput, delay and ID(s) of the node(s) attached to the other side
of the link. This additional link information can be provided by helper functions collecting
relevant link data. The node-level functionality of Topology Management can be separated
into two main interfaces: updating the table entries for each link the node is connected to and
publishing the link information table locally. The interface for updating the table entries
requires information about link IDs generated by a responsible entity and distributed during
the initialization phase, e.g., the network attachment phase in the form of a configuration file.
Moreover, it receives initial link attribute values during the initialization and updates the values
upon detecting changes in the link condition. The format of table updates needs to be
specified in advance, and in an early stage of the Topology Management implementation
prototype, this format can be a simple text-based one. On the other hand, the interface for
publishing the link information table subscribes to link table information, parses the contents
and publishes the updated version of the table. The publication of link attribute information
must occur periodically or on-demand attribute value changes exceed predefined thresholds.
In order to optimize performance, a node can publish the table containing only differences
between previous and current parameter values.

2.2.7 Applications

The PSIRP Firefox plug-in provides mechanisms for users to subscribe to publications using
the PSIRP protocol through their web-browser. The plug-in intercepts all PSIRP protocol calls
in the address bar or in a link embedded in a webpage (e.g. psirp://), passing the PSIRP
parameters (SId and RId) to the XPCOM component. This component interacts with the
PSIRP library by subscribing to the publication identified by the SId and RId pair and, after
retrieving it, the component saves it as a local file. Finally, the plugin opens the fetched
publication and displays it in the web-browser. Currently, the retrieved publication is saved as
a local file, which is later opened by the web browser. As a future improvement, the
publications will be displayed directly in the web browser without requiring copies to be saved
as local files.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 8(24)

2.3 Integration and Improvement Plan
This section outlines integration and improvement plans for the node architecture
implementation.

2.3.1 Blackboard Core Improvements

The blackboard-core and the essential helpers (network I/O and local rendezvous) currently
have known limitations that need to be addressed during the upcoming integration phase. The
(not exhaustive) list of planned improvements includes:

 Increasing the limit on the maximum number of items in a scope, the maximum size of
a publication and the maximum number of versions of a publication.

 Supporting publication versioning in the networking portion.

 Allowing for subscribing to parts of publications and support demand paging over the
network.

 Implementing Blackboard garbage collection as currently publications are never freed.
This relates to implementing a node-internal caching helper that maintains references
to publications.

 Improving access control and security features through the correct use of scopes.

 Reviewing the higher-level view of the blackboard through the pub/sub API, especially
for the object-orientated language implementations.

 Adding support for scopes-in-scopes.

 Implementing page sharing between different publications.

 Optimizing various components, including in-kernel rendezvous.

 Implementing configuration information for the forwarding and local rendezvous
functions may need configuration information (Ids, link connectivity, etc.) that can be
specified by other components. For example, the table of link identifiers should be read
from the blackboard instead of a static file.

2.3.2 PLA Integration

There are two possibilities for integrating PLA functionality into the blackboard based
prototype, PLA functionality can either be a standalone helper application or it can be included
in the existing network I/O helper. We decided to initially implement the latter option, since it is
a straightforward solution, while the internal structure of the blackboard prototype will continue
to change. The implementation would work as follows: as packets enter or leave the network
I/O helper, PLA related functions such as signature verification or addition, will be performed
according to the local security policy.

There are plans to eventually create a separate PLA helper application. This is a better fit to
the blackboard prototype’s design philosophy and allows PLA’s cryptographic functionality to
also be used for other functions, such as local authentication.

2.3.3 Network Attachment Integration

The network attachment daemon needs to be revised so that it uses the blackboard for
communication with other components. For example, signalling identifiers used by the
rendezvous and topology functions will probably need to be exchanged. This component can
also provide information about link connectivity. In addition, inter-node communication should
utilize SIds, RIds and FIds correctly, according to the model outlined in D2.3. Through the
network attachment process, nodes joining networks can learn signalling IDs and other
necessary configuration information.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 9(24)

2.3.4 Transport and Caching Integration

The current prototype lacks transport functionality, including flow and congestion control as
well as reliability. The transport functionality will be tightly coupled with caching.

In routers, caching should be implemented instead of using queuing. A router cache can be
used to assist both push- and pull-based transport protocols. In the packet-level push mode,
data packets are pushed out by the source. Sinks send (re)transmission requests only when
they discover that some packets were lost or when they reconnect after a short disconnection
period. Such requests can also come, in a more pull-like mode, from a new node that has just
received a new meta-data object. In the packet-level pull mode, where sources do not actively
push any data packets, the routers can be more active. Instead of relying on the source to
push or the sink to pull the data, a router can actively pull data from the source, adjusting the
pull rate to its cache capacity, amongst other metrics.

The details of these transport protocols should also be worked out later on the architecture
design side. However as an initial effort, a pull-based flow control scheme that utilizes token
buckets has been planned to be implemented.

2.3.5 Application: Firefox Integration

The integration of the Firefox plug-in into the prototype is straightforward since the plug-in is a
standalone package using the PSIRP library. First, the user must have a running version of
Firefox 3.x and the Blackhawk prototype installed on their machine. For the installation, the
user needs to open the plug-in package (psirp_plugin.xpi) using the web browser and finally,
the PSIRP Firefox plug-in will be ready to use after the web browser has installed the plug-in.

The following succession of four figures shows the PSIRP Firefox plug-in in action. Figure 2.3
shows the plug-in installation, which is straightforward - the user merely needs to open the
plug-in package and restart the browser, after which the browser will be PSIRP-enabled.

Figure 2.3 – PSIRP Firefox Plugin Installation

Figure 2.4 shows the PSIRP-enabled Firefox subscribing to a publication identified with
SId/RId ::/12::34

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 10(24)

Figure 2.4 – Subscribing to a publication (SId, RId) = ::/12::34

Figure 2.5 illustrates a web-page with an embedded PSIRP link which forwards to a new
publication identified by SId/RId ::/::2

Figure 2.5 – Embedded link with PSIRP identifiers (SId, RId) forwarding to a new
publication

Figure 2.6 shows the new publication forwarded from the previous webpage.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 11(24)

Figure 2.6 – Successful subscription to the new publication

If the publication does not exist, then the browser will return the 'File not Found' error.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 12(24)

3 Network-level Integration
This section outlines the integration of the network-level components, based on the node
architecture presented in Section 2. The components in this section are based on the current
network architecture [Tro2009], presented in the following Section 3.1.

3.1 Current Network Architecture
The following brief presentation of the PSIRP network architecture is based on D2.3
[Tro2009]. Figure 3.1 shows the current network components and their relationships.

Figure 3.1 – Network Architecture

Forwarding networks represent the physical delivery infrastructure in our architecture.
Forwarding nodes (FN) provide forwarding functionality from publishers of data to subscribers
of data. Rendezvous points (RP) within rendezvous networks perform the matching function
between publications and subscriptions within particular scopes of publication (see D2.3).
After such a match has been found, an inter-domain topology is constructed in dialogue
between the RP, the Inter-domain Topology Formation (ITF) function and the Topology
Management (TM) functions of traversing forwarding networks. The topology management
function in each forwarding network is responsible for constructing appropriate (intra-domain)
forwarding paths within its realm, i.e., the forwarding network. Helper functions of various
kinds exist, e.g., for caching, error control, fragmentation, or path discovery.

The network architecture exposes a publish-subscribe service model to applications
implementing pub and sub functionality. These applications reside with nodes that are based
on our presented node architecture of Section 2.

A more detailed description of the network architecture can be found in D2.3 [Tro2009].

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 13(24)

3.2 Status of Components
The following section outlines the status of implementation, based on the components outlined
in Figure 3.1.

3.2.1 Forwarding Node

The project currently has two forwarding node implementations that are compatible with each
other:

 The Blackhawk prototype for FreeBSD includes packet forwarding functionalities as
part of the network I/O module.

 A hardware-level forwarding node implementation has been implemented on NetFPGA
hardware.

As mentioned before, the Blackhawk prototype implements simple zFilter-based forwarding.
Currently it is possible to configure one link identifier per interface; support for multiple link
identifier tags or identifiers for virtual trees is not yet implemented. Other missing features are
TTL support (for loop prevention) and checking the number of 1-bits in FIds (for security and
safety). The prototype for NetFPGA, on the other hand, does implement the more advanced
features that the Blackhawk implementation is lacking.

3.2.2 Rendezvous Node

In this section, the status of the Rendezvous Node (RN) helper function implementation is
described. This text assumes that the reader is familiar with the terms and structure of the
PSIRP rendezvous system described in the conceptual architecture [Tro2009] and the
contents of the implementation progress report D3.3 [Jok2009b].

The current version of the RN helper function extends support for rendezvous from the single-
RN architecture to the multi-RN architecture and thus, it is an initial realization of the inter-
domain (inter-RN) rendezvous system defined by the rendezvous design team. The
implementation, to a large extent, supports the functionality needed for the creation and
management of a rendezvous network, and supports rendezvous for publish/subscribe
signalling from the hosts that are within reach of this network. A rendezvous network is a
logical network where a group of RN entities have established a policy compliant rendezvous
network topology. A minimal size rendezvous network contains only one RN. From the
complete inter-domain rendezvous system the implementation excludes support for
interconnection overlay, which by design utilizes communication between multitudes of
rendezvous networks. However, the implementation can be inherently configured to support
communication between two rendezvous networks in the same manner it supports connecting
to a rendezvous node via peering. The current rendezvous node implementation is a stand-
alone version, being realized using Ruby-1.8.

Figure 3.2 illustrates its overall architecture, outlining three major parts to its implementation.

 The rendezvous node module containing functions for rendezvous signal handling,
rendezvous network management, rendezvous point execution, MySQL interfaces and
stub function interfaces.

 The MySQL database module (including the Ruby-MySQL-API) containing all
rendezvous node and rendezvous point data tables:

o Scope cache, containing scope identifier (SIds) entries of all scopes known by
the rendezvous node.

o Rendezvous node neighbourhood, containing information about known
rendezvous node neighbours, guiding the behaviour of the rendezvous point
search function.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 14(24)

o Scope specific publication/subscription tables containing information about
active publications and subscriptions.

 Stub functions, such as for forwarding and topology that were implemented to enable
the testing of actual rendezvous node functionality in a rendezvous network topology.

Figure 3.2 – Rendezvous Node Implementation Architecture

While the rendezvous node module and the MySQL database are supposed to be integrated
with minor modifications to the complete prototype, the stub function collection is to be
replaced by the functionality from the blackboard and topology components.

3.2.3 ITF Node

There is currently no implementation of the ITF node, as the protocol and mechanism design
for the ITF function is still ongoing. The first design choice implementations are expected
towards the end of 2009.

3.2.4 Topology Management

The network level Topology Management module subscribes to link table publications and to
Rendezvous-related events at the same time. As it collects link information in the form of
tables, it can store the topology information for the overall network together with the per-link
annotations in a flexible graph description format (such as GML). Having all necessary
information, this module is responsible for generating the shortest paths within its assigned
domain. The notion of a domain (area) associated to a particular Topology Management entity
can be implemented through predefined scopes. Thus, all communication related to topology
information collection and dissemination is done under a particular scope assigned to the
topology management. After receiving the publication/subscription matching notification from
the rendezvous point, the Topology Management function publishes the shortest path
information in the form of a zFilter, taking into account the current link parameters and
application requirements. Additional application demands can be contained in the metadata of
signalling messages coming from the rendezvous system.

A crucial aspect of this architecture lies in the optimal data distribution. Publishing topology
information under a predefined SId/RId pair is one possibility. For this, each Topology
Management area is associated with one predefined SId, under which each node is
represented as an assigned RId. Therefore, publishing the link state tables will contain

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 15(24)

SId/RId pairs unique for a given domain and a given node, while every topology information
update will rewrite the existing topology information since it is considered a new version of the
same publication. Publishing the zFilter information as the Topology Management function’s
response to the rendezvous system query can be done using algorithmic identifiers,
generated using the Topology Management area SId and RIds of publishing and subscribing
nodes. This is illustrated in Figure 3.3.

Figure 3.3 – Topology Management implementation

At present, a simple prototype for local and networked cases exists. It is currently being
rewritten and will be harmonized with the other components, e.g., network attachment and
rendezvous. In order to test the performance of the current prototype, we aim to create larger
networks using a set of virtual machines and the ns-3 simulator’s emulation environments.

3.3 Integration Plan
The integration plan for the network architecture focuses on two major elements, namely the
rendezvous node and the forwarding node. The plans are outlined below.

3.3.1 Rendezvous Node Integration

The integration of the rendezvous node implementation with the blackboard and topology
manager components will happen in phases, illustrated in Figure 3.4.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 16(24)

Figure 3.4 – Rendezvous Node Integration Plan

The rendezvous node is a helper application that, at least in theory, can be located at any
node in the PSIRP network. The first integration step will be to connect the rendezvous node
with the rest of the PSIRP system modules and to reproduce the existing rendezvous features
in the stand-alone implementation using the tools provided by the blackboard. In practice, this
means replacing the existing forwarding stub with the ruby-based API provided by the
blackboard, and synchronization of the used signal formats, if needed. It is assumed that
during the first phase, RN-to-RN rendezvous signal formats will remain largely the same
because rendezvous signals are publications under the scope identifier subscribed to by the
receiving RN.

During the second phase, we will focus on removing the topology stub and establishing the
required co-operation with the actual topology manager. Even though the co-operation with
the topology function is not critical for the rendezvous node, it is critical for the topology
function because the rendezvous system is assumed to be the key provider of pub/sub
topology information. It is therefore assumed that the topology-rendezvous co-operation will
exploit similar pub/sub based communication as is used in the RN-to-RN communication i.e.,
the RP provides the required parameters to the topology function as a publication that the
topology manager can subscribe to. Currently, it is still open what these parameters will be
and what the procedure will be following publication, e.g., who will provide the path to the
publisher and in which format.

After these two phases, the majority of the rendezvous integration will have been finished,
enabling further implementation work to continue. As the progress of the two phases could be
adversely affected by unforeseen issues, a detailed schedule cannot be released. However, it
is expected to be completed before December 2009.

3.3.2 Forwarding Node Integration

As the packet format of the prototype is likely to change (during autumn 2009), it could affect
both forwarding node implementations in addition to the local rendezvous function. However,
as the other components generally deal with higher-level data (which has been processed by
other components in the component wheel instead of the raw packet data), they should
remain unaffected.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 17(24)

4 Demonstrators
The PSIRP project implements various demonstrators, based on the presented prototypes. In
the following, we outline the current laboratory demonstrator as well as the efforts towards a
larger networked test bed with one of our external partners, Essex University.

4.1 Current Laboratory Demonstrator
In this section, four different demonstrators are discussed:

 File-based pub/sub demonstrations with the earlier, unpublished, FUSE-based
prototype

 zFilter-multicast demonstrations with a UDP/zFilter-proxy

 Stand-alone rendezvous network demonstrator

 Planned demonstrations with the released Blackhawk prototype

4.1.1 Demonstrator with the FUSE-based prototype

Deliverable D2.3 [Tro2009] presented a demonstrator based on an early development version
of the prototype for FreeBSD. It enables audiovisual demonstrations suitable for introducing
and concretizing the implemented system and pub/sub concepts. Several public
demonstrations have been carried out with a setup consisting of three computers connected
to each other by separate links.

The architecture of the earlier implementation (the so-called FUSE-based prototype) was
described in D3.2 [Jok2008], and it had two important features that the demonstration relied
upon. Firstly, metadata was broadcast to all nodes in the network when something was
published. Consequently, end-nodes could immediately initialize "empty data containers" for
the corresponding publications in their virtual memory systems. They also created entries in
their local filesystems for those publications (e.g., /pubsub/0000.../12ab.../data). Secondly, the
prototype supported demand paging over the network. When an application started to read a
file of the aforementioned type at some location, the corresponding memory pages were
subscribed to and fetched from the network. Thus, unmodified legacy applications, such as
image viewers and music players, could be used in demonstrations, and the system could
even emulate streaming. Moreover, packet authentication with PLA was also part of the
system. Figure 4.1 below shows what the protocol looks like in a demo scenario that utilizes
these concepts.

Figure 4.1 – Basic Demonstration Scenario from D2.3

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 18(24)

During spring 2009, an evolved demo setup was also created. It included a utility, written in
Python, for publishing lists of files in the following way:

Publisher

1. Traverse a directory (or a list of filenames) and publish all files in it.

2. Publish a list of RId-to-path mappings of all the files published in the previous step.

Subscriber

1. Receive metadata about the published files and the list.

2. Subscribe to the content of the list of files.

3. Create a local directory structure with symbolic links from the filenames to the
publications under /pubsub/.

4. When those files are accessed, their content is fetched on demand.

These steps are illustrated in Figure 4.2.

Figure 4.2 – Publishing Directory Contents

By adding this functionality on top of the underlying pub/sub system, the following concrete
demo scenario became possible:

1. A computer game's executable binary, e.g. pinball, and its resource file directory
(containing sounds, images, etc.) are published and loaded in the publisher's memory.
At this point, only the metadata of these files get transferred to the subscriber.

2. The subscriber parses the received list of files and creates links in the same directories
where they were found on the publishing computer (e.g., /usr/local/share/pinball).

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 19(24)

3. The application is started by executing the link to the binary, found by its original name
on the subscribing machine. The contents of the binary, or the needed parts of it, are
fetched from the publisher. Some additional data gets transferred as well, as resource
files are accessed (via the links that point to /pubsub/.../.../data files).

4. When different levels are loaded in the game, more data is fetched from the publisher.

4.1.2 NetFPGA demonstrator: UDP streaming over zFilter-based multicast

In order to demonstrate the multicast features of zFilters [Jok2009] and the forwarding node
implementation for NetFPGA [Kei2009], a stand-alone pub/sub proxy that performs a simple
translation of UDP data to PSIRP packets was written. The proxy was implemented in Python
for Linux. On the publisher side, it re-packetizes the payload of UDP datagrams into Ethernet
frames with a forwarding header that includes a zFilter-FId. Subscribers do the inverse
operation to received frames. In this system, subscribers of data need to know a FId with a
path to a publisher, who can then OR the collected return path FIds to a FId that is used for
data delivery.

The demo network can look like the one in Figure 4.3 below, or it could be much more
complex, having multiple forwarding nodes. Each end-node can run several instances of the
proxy (with different UDP and FId configurations), and can act as both a publisher and
subscriber for several data streams (audio, video, etc.) at the same time.

Of course, this demonstrator was only a temporary solution -- created for the NetFPGA
Developers Workshop in Stanford in August 2009 -- before integrating the same kind of
functionality into the Blackhawk prototype (see below).

4.1.3 Standalone Rendezvous Network Demonstrator

During spring 2009, the rendezvous node implementation was expanded to support
rendezvous network functionality. This functionality was successfully tested in a rendezvous
network demonstrator, which is illustrated in the Figure 4.3.

Publisher

Subscriber

Subscriber

RN01

RN20 RN30

RN201 RN202

RP

Figure 4.3 – Rendezvous Network Demonstrator Example Topology

In the demonstrator, a group of rendezvous nodes (RNs) establishes a rendezvous network
with a policy compliant topology by using a simple rendezvous node discovery protocol. When
the rendezvous network topology is established and each RN knows their active RN
neighbourhood, test clients (publishers and subscribers) could start communicating with it
through publications and subscriptions. The rendezvous network provides rendezvous and
publication reachability. In addition, before the clients can start subscribing and publishing
publications, they need to determine their policy-compliant inter-RN upgraphs by subscribing
to the well-known “upgraph probe” publication. This probe is forwarded upwards in the

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 20(24)

rendezvous network based on the topology and, while moving upwards and horizontally, the
upgraph is updated hop-by-hop in each rendezvous node. Finally, the completed parts of the
upgraph are returned to the test client as a publication. The reasons for having these
upgraphs, in the first place is that publisher and subscriber upgraphs are needed to be
submitted from the RP to the topology stub in the case of a publication rendezvous. From the
upgraphs, based on given policies, the topology stub can build a policy compliant forwarding
path for the publication data delivery – this path being returned to the RP, which in turn
delivers it to the publisher. When receiving the notification from the RP, the publisher sends
the publication data to the subscriber using the provided path information. It is important to
note that this demonstrator does not implement multicast forwarding. Instead, data is delivered
separately to multiple subscribers.

The demonstrator runs in a single physical node where the rendezvous network is locally
established as a logical network. Communication between the rendezvous entities is
implemented using UDP. The demonstrator supports multiple test clients in single or dual role.
Figure 4.3 shows a typical example topology of the rendezvous network. RP creation is done
dynamically based on the trust relation between the test client and its rendezvous node.

4.1.4 Planned demonstrations with Blackhawk v0.1

At the time of writing, no public demonstrations have yet been held with the released
Blackhawk prototype. The architecture of the released version has changed considerably from
the FUSE-based prototype, as explained in D3.3 [Jok2009a]. In fact, the same demonstrations
as described above cannot be performed with the current version, because it does not support
demand paging, and because metadata is sent only to a rendezvous node instead of
"pushing" it to all nodes in the network. Furthermore, the prototype has limitations regarding
the publication size, number of publication versions, etc., and it does not support multicast
data delivery.

The current setup used for testing the prototype is depicted in Figure 4.4.

Figure 4.4 – Simple Test Setup for the Current Prototype

Instead of the NetFPGA-forwarder, a FreeBSD node can be used to perform the same role. In
this system, metadata about publications is sent to and stored at the local rendezvous node.
Applications using libpsirp can issue asynchronous subscriptions to data, that is, they can
receive whole publications by first getting metadata from the rendezvous node, and then data
from the publisher.

Once the required functionality has been implemented in future releases, similar
demonstrations as with the FUSE-based prototype and the UDP/zFilter-proxy could become
possible. In addition, the demonstration could present, e.g. network attachment, rendezvous,
topology management, transport, and caching functionalities once these get fully integrated
into the implementation. Using pure pub/sub-based applications as demonstrators has also
been envisioned.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 21(24)

4.2 Planned Demonstrator at Essex University
Efforts have been undertaken to establish a campus-scale infrastructure to demonstrate and
test the integration of various components, to demonstrate applications, and to provide an
infrastructure for external partner collaboration. The infrastructure is supposed to be gradually
expanded for our purposes. The following section outlines this infrastructure and the current
status of its realization.

4.2.1 Infrastructure

The infrastructure is based on a heterogeneous IP infrastructure that was built under the
recently finished UK TSB (Technology Strategy Board) funded project HIPnet [HIP2009]. It
provides a variety of access technologies in the wireless and wireline domain, e.g., WiMax,
WiFi, and all-optical infrastructure. The infrastructure spans the local campus at Essex
University, located at the edge of Colchester (UK). The university's facilities hold about 2500
students in their dorms, with access to their infrastructure. The wireless coverage has
recently, in June 2009, been extended to full campus coverage with a single SSID. The
WiMax coverage spans most of the campus. The physical connectivity at the optical level
extends to the BT facilities at Adastral Park (UK). Figure 4.5 outlines the current facilities.

Figure 4.5 – Testbed between BT and Essex University (UK)

As can be seen, various service facilities like storage and video services are available. These
could be used for a variety of PSIRP-based services later on.

4.2.2 Current Integration with PSIRP

Currently, three machines are being installed for a simple PSIRP network setup. Two of these
machines are a publisher and a subscriber, respectively, currently running the latest release of
the PSIRP node architecture BlackHawk [Jok2009b]. The third node is a forwarding node,
utilizing the current implementation of the Bloom filter approach developed in PSIRP
[Jok2009a].

Work has started to install a third end node, serving as a second subscriber in a simple
scenario. Furthermore, a second forwarding node will be installed soon for demonstrating the
intra-domain forwarding capability. The forwarding elements will be co-located with the

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 22(24)

Ethernet switches at Essex University (see Figure 4.5). The publisher will reside at Essex
University together with one subscriber. The second subscriber will reside in the BT premises
at Adastral Park. We expect the test bed and its PSIRP nodes to be gradually expanded
towards a set of some 10 nodes within a growing campus infrastructure.

4.2.3 Potential Usage

Apart from the apparent demonstration appeal of such a networked setup, serving our
dissemination and demonstration to potentially interested stakeholders, the test bed will also
serve evaluation purposes as outlined in [Rii2009]. For instance, real network load
performance experiments can be conducted for evaluating (a) end node architecture
performance and (b) forwarding node performance.

But we also plan to utilize the test bed for extensions at the technological level. One such
extension is the development of a topology management module (see [Tro2009]), which will
demonstrate the applicability of the PSIRP information concepts for optimizing resource
utilization on the optical level. For this, we will utilize the existing optical infrastructure in the
testbed. This work will be conducted in partnership with Essex University and is a very good
example of the engagement with external partners.

Furthermore, the integrative demonstrator will be used as the basis for a UK-funded project
between BT, Ericsson (UK), Essex University and Cambridge University in the area of lifestyle
management [PAL2009]. This project targets novel services in the user-centric health area
through self-monitoring and information processing. This is an area where we expect novel
input from an underlying information-centric architecture like PSIRP.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 23(24)

5 Conclusions
The integration of implementation work into a single coherent prototype is progressing, as we
outlined in this deliverable. As a result, not only is the architecture work converging, but also
the various implementation efforts on these architectural components are starting to converge
into a coherent and running system. In particular core components like the node architecture,
forwarding and rendezvous node are coming together, allowing for envisioning a first
networked setup of a PSIRP network. Further integration efforts are needed for components
like topology management, node attachment or the ITF node. In the latter cases, the existing
collaboration with the architecture efforts is the foundation to provide direct input into the
design of node implementations.

We recognize that the demonstration of the capabilities of our system is crucial. For this
reason, a first demonstrator in our laboratories existed relatively early in the project and is
constantly being updated, based on the implementation work. In addition, efforts are
underway to extend the laboratory demonstrator towards a fully networked demonstrator
within a local test bed. This will not only enable demonstrations but also provide a testing
ground for the implementation itself.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.4

Date: 2009-08-31 Security: Public

 Status: Completed Version: 1.0

PSIRP 24(24)

6 References
[HIP2009] “Heterogeneous IP networks: HIPnet”, available at

http://gow.epsrc.ac.uk/ViewGrant.aspx?GrantRef=EP/E002382/1, August 2009

[Jok2008] P. Jokela (ed), "Implementation Plan based on Concept Architecture", PSIRP
deliverable D3.2, September 2008

[Jok2009a] P. Jokela, A. Zahemszky, S. Arianfar, P. Nikander, C. Esteve, “LIPSIN: Line
speed Publish/Subscribe Inter-Networking”, Proc. of ACM SIGCOMM, 2009

[Jok2009b] P. Jokela (ed), "Progress Report and Evaluation of Implemented Upper and
Lower Layer Function", PSIRP deliverable D3.3, June 2009

[Kei2009] J. Keinänen, P. Jokela, K. Slavov, "Implementing zFilter based forwarding node
on a NetFPGA", Proc. of NetFPGA Developers Workshop, August 2009

[PAL2009] "PAL: Personal and Social Communication Services for Health and Lifestyle
Monitoring", available at http://pal.dalore.net, August 2009

[Tro2009] D. Trossen (ed), “Architecture Definition, Components Descriptions and
Requirements”, PSIRP deliverable D2.3, February 2009

[Rii2009] J. Riihijarvi (ed.), "Description of validation and simulation tools in PSIRP
context", PSIRP deliverable D4.4, July 2009

