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1 Introduction 
The PSIRP project is an EU FP7 funded project with a 30 month lifetime. Its ambition is to 
investigate major changes to the IP layer of the current Internet, finally replacing this layer with 
a new form of internetworking.  

As Mark Handley puts it [Han06]: 'the Internet only just works'. We can observe that the 
current dominant internetworking solution, the Internet Protocol suite, suffers from a number of 
limitations, although it works reasonably well for current demands. Challenges include ones 
related to efficient support for mobility, efficient global multicast, and multi-homing. But in 
addition, vulnerability to unwanted traffic and Denial-of-Service (DoS) attacks is a growing and 
often fundamental problem with the current Internet architecture.  

We see the main reason for the shortcomings of the current IP-based Internet being deeper 
embedded in the underlying paradigm of communication than in its operational shortcomings. 
More specifically, the current endpoint-centric communication paradigm places rather arbitrary 
topological constraints on the delivery of information. With the observed increase of 
information-centric services, such as the World-Wide Web or newer contemporary 
applications such as sensor networks, the inflexibility of endpoint topologies increasingly 
places a burden on solution developers that needs circumvention by virtue of ever increasing 
number of overlays. This leads to a lack of flexibility and to an increasing rigidity; a circle that 
PSIRP intends to break.  

Our approach in this project is to investigate a new information-centric communication 
paradigm in which we consider any communication scenario as being concerned with the 
production, retrieval and consumption of information, all of which are surrounded by 
concerns of the different players involved in that particular scenario. The notion of intention 
becomes crucial in the establishment of communication between two parties, where the match 
of intentions is the key to successful communication, not the reachability of endpoints. With 
that, our approach moves the balance away from the currently sender-driven IP model. 
Instead, we advocate a publish-subscribe model in which receivers of information have 
control over their expression of interest and therefore the reception of information. 

A Vision-driven Methodology  
Our work is driven by a clear methodology that combines bottom-up and top-down 
approaches, as outlined in [PSI2008d] and shown in Figure 1.1 below, in phases of vision 
making, definition of goals, leading to principles and requirements for the architectural work 
with the eventual definition of components and an architectural specification that can be used 
for the implementation work and evaluation. All these phases interact through educating each 
other in feedback, e.g., from implementation experiences back into architectural concepts and 
vice versa.  

It is the definition of a clear vision that drives our work, as expressed in [PSI2008b]. This 
vision outlines a future driven by the principle of conflicts (tussles) being resolved in runtime 
through mediation of conflicting policies as well as isolation of tussles, all of which is enabled 
by a provisioning plane that is entirely driven by information-centric concepts. While we 
formulate this vision with broad concepts, therefore outlining what a PSIRP world might look 
like in the future, we define the scope of our work within this vision as clearly being focussed 
on the routing and forwarding fabric that underlies this vision, i.e., the provisioning plane as 
outlined in [PSI2008b].  

This vision enters into our work through the idea that information is everything and everything 
is information, allowing for providing the basic building blocks to incorporate data and 
metadata concepts into the architecture. This will enable us to extend towards the formulated 
vision of automated tussle mediation during runtime.  

 



Document: FP7-INFSO-ICT-216173-PSIRP-D2.3 
Date: 2009-02-27 Security: Public 

 Status: Completed Version: 1.0 

 

PSIRP  5 (100) 
 

Choice

Goals

Principles

Design Patterns & Considerations

Components

Choice

Instance

Deployment

VISION
Q

u
e
st

io
n

Constraints

SoA
R

e
m

o
v
e

Add/Remove

Derive

Observe

Map

Specify

Implement

Deploy & evaluate

Add/Remove

Choice

Goals

Principles

Design Patterns & Considerations

Components

Choice

Instance

Deployment

VISION
Q

u
e
st

io
n

Constraints

SoA
R

e
m

o
v
e

Add/Remove

Derive

Observe

Map

Specify

Implement

Deploy & evaluate

Add/Remove

 
Figure 1.1 – System design process of the PSIRP project 

From Goals to Principles  
Following our methodology [PSI2008d], we define clear design goals, being expressed as 
follows: 

• Devise methods for building information hierarchies as layered graphs.  

• Devise methods for flexible information reachability.  

• Devise a basic communication model, which allows for increased receiver control.  

Moving one step further leads us to design principles for our work. These principles are not 
only concerned with the particular goals of our architecture along the lines of the 
abovementioned goals but with general principles for developing any Internet-scale 
architecture. Hence, we divide our principles into general ones and those specific to the 
PSIRP design. The former can be described as principles that are relevant from an 
architecture design angle, i.e., one can argue about their applicability for similar architectural 
efforts. An example for this is the Trust-to-Trust (T2T) principle [Cla2007] that describes the 
placement of functions according to the trustworthiness of the component implementing the 
function. Another principle resolves around the importance of enabling markets in an 
internetworked architecture, taking into account the (potentially opposing) interests of the 
different stakeholders. These general principles can be found in [PSI2008d]. Our PSIRP-
specific design principles can be summarized as follows: 

• PS1 – Information is hierarchically organised: Higher-level information semantics 
are constructed in the form of ‘'directed acyclic graphs’’ (DAGs), starting with 
meaningless forwarding labels and moving towards higher-level concepts (e.g., 
ontologies), or vice versa.  
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• PS2 – Information scoping: Mechanisms are needed that allow for scoping 
information on different levels of semantics in the architecture (e.g., via means of 
rendezvous, discovery, search, and others). With this, information scoping limits the 
reachability of information to the parties having access to the particular mechanism 
(e.g., rendezvous) that implements the scoping.  

• PS3 – Scoped information neutrality: Within each scope of information, data is 
forwarded based on the given (scoped) identifier, i.e., the architecture is neutral with 
regard to the semantics and structure of the data.  

• PS4 – The architecture is receiver-driven: No entity shall be delivered data unless it 
has agreed to receive it beforehand through appropriate signalling methods (i.e., 
excluding physical means of receiver choice), wherever this can be implemented in the 
conceptual solutions for our architecture. Limitations to this principle can apply, for 
instance, at the physical level.  

Returning to Our Methodology...and Moving Forward  
While the formulation of clear design principles is seen as an important step in our architecture 
development, we now return to our methodology. It is important to stress that all steps, 
including the formulation of our design principles, are part of a constant educational cycle 
during which lessons learned in other steps, such as in the implementation or results of our 
evaluation, lead to refinements and revisions of steps elsewhere, such as the (careful) 
revision of design principles.  

In the following chapters, we present the results of the further steps of our methodology, 
namely the concepts that are derived from design patterns that we recognized in our first 
main deliverable D2.2 [PSI2008d]. These are manifested in the information concepts and 
high-level architecture view that are outlined in Sections 2 and 3 of this report, respectively. 
The more detailed description of our components is presented in Section 4. Design 
considerations spanning across the entire architecture, such as for security and mobility, are 
outlined in Section 5 before turning to application considerations in Section 6. 
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2 Information Concepts 
With the focus of PSIRP being information, it is critical to understand the various information 
concepts that are provided by the PSIRP architecture. These concepts are directly reflected in 
the various architecture components, in particular the identifiers (see Section 4.1) and the 
operation of the rendezvous system. 

Everything is Information 
The most basic notion of PSIRP is that everything is information by virtue of identifying a 
bucket of data with a statistically unique label. This label is used in the process of rendezvous 
(see Section 4.4) to create the transient relation between the publisher of this information and 
the subscribers to this information. For this reason, we call the identifier being used for 
information the rendezvous identifier (RId).  

The PSIRP information concepts do not prescribe what exactly this bucket of data, the actual 
information, would be. We will see later that the architecture itself builds up more complex 
information structures from simple memory pages (as buckets of data) over channels of data 
to versioned documents or streams of video data. Typical examples at the application level 
could be files, e-mails, still or individual video images etc. As introduced in D2.2 [PSI2008d], 
the information items can include information about other information items by virtue of 
reference. This allows for introducing the concept of metadata of data, which can be used to 
group information at the application level, based on some specific semantic for the particular 
group of information. We will return to the problem of grouping information after the next 
section. 

Building Networks of Information 
The PSIRP concepts allow for grouping individual pieces of information, e.g., mail or images, 
into so-called information networks, following the scoping concept as introduced in 
[PSI2008d]. With that, information can be logically grouped together in order to enable, e.g., 
controlled access to this information for a limited set of publishers and subscribers or to 
enforce particular governance rules for the given information network. This is illustrated in 
Figure 2.1.  

 
Figure 2.1 – Building information networks 
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Each information network represents information in itself and therefore requires an identifier in 
order to be addressed. To reflect the specific purpose of information networks, i.e., to scope 
the reachability of information, we introduce the scope identifier (SId) as a specific subclass 
of rendezvous identifiers. We will later see in the rendezvous function (see Section 4.4) that 
SIds represent the rendezvous points implementing a particular information network (identified 
by the respective SId), i.e., the information item the SId represents is the information network 
itself (being a collection of information items). 

Grouping Information within Networks 
While information networks already enable the grouping of information into larger sets, the 
PSIRP architecture introduces an intermediary concept, i.e., one that ranges in-between 
scopes and individual information pieces. We call this concept information collections.  

As a motivating example, we use a video stream. Such a stream can be identified with a 
single RId, labelling the entire bucket of video data with the same RId. If, however, a 
subscriber would like to subscribe to individual segments of the video or even individual 
images1, the opaque addressing of the entire stream would not allow for this. As an 
alternative, the publisher of the video stream could label each individual image as a separate 
information item. This would create some 25 individual information items per second. In a 
typical application scenario however, these seemingly separate information items belong 
semantically together. Knowledge about this semantic relationship could enable the network 
to optimize operations of, e.g., forwarding (using same forwarding trees) or caching.  

Other examples of information items that semantically belong together but would be created 
as seemingly separate information items arise due to fragmentation or retransmission.  

While most of these semantic relations could be implemented solely on application layer, 
using the aforementioned concept of metadata (i.e., using a metadata information item 
identified with one RId – the metadata containing the Rids of the individual information items 
in the information collection), the PSIRP architecture does provide means to group information 
by virtue of algorithmic rendezvous identifiers. With this concept, rendezvous identifiers are 
generated based on a common algorithm. Hence, it is the algorithm that is tying the 
individually created information items together as one logical unit rather than the metadata 
information item described above. For more information on algorithmic identifiers, please see 
Section 4.1.  

Grouping Information Networks 
We introduced the concept of information collections as a means to collect individual 
information items into sets of information collections within a single information network. But 
information networks themselves can be collected. These collections of information networks 
can represent networks within organizations, e.g., corporations, or networks within social 
structures, e.g., social networking sites. For example, one can publish one of his/her 
information networks to a particular directory, i.e., the SId of the specific information network is 
published in another information network, the directory. The nature of SIds as subclasses of 
RIds obviously enables this kind of grouping.  

                                                
1 Realistically, an application would need to take into account encoding-specific constraints like key frame based 

coding – only allowing to start re-winding video to a key frame rather than an arbitrary one. However, the basic 
idea still remains, i.e., allowing the subscriber to subscribe to an arbitrary (key) frame. 
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The following figure shows a particular example of grouping information network.  

 
Figure 2.2 – Grouping information networks 

When grouping such information networks, we, however, implicitly create information by virtue 
of the structures themselves. As can be seen from the example in Figure 2.2, this can contain 
sensitive information such as information networks within corporate organizations like BT. It is 
unlikely that organizations would like to have these structures revealed without any control 
over the access to this information.  

Given that the information networks are identified by SIds and used in the rendezvous process 
(see Section 4.4) to resolve to the appropriate rendezvous node that serves the particular SId 
(imagine every grey circle in Figure 2.2 being such a rendezvous node), there is potential for 
information disclosure to untrusted parties. For example, an employee of BT would need to 
divulge the specific SIds of the information networks within BT she would like to connect to. 
For this, the SIds would need to be transferred to a local rendezvous system (see Section 4.4 
for the inner workings of this rendezvous system), which is potentially untrusted. Through 
gathering the used SIds, the untrusted part of the rendezvous system can easily deduce the 
information structure of the BT information network as a whole.  

To overcome this problem, the usage of an algorithmic scope identifier promises a solution. 
The information structures within a certain governance, e.g., the BT information network as a 
whole, can semantically be grouped together through a common algorithm (and a seed to 
initiate a particular sequence). It is this algorithm that is conveyed via the rendezvous system, 
reaching the topmost node in the information network structure. Executing the algorithm with 
private information, e.g., encoded in the payload of the information item, allows the topmost 
node to forward the request to the appropriate rendezvous node, which serves the 
(algorithmically determined) SId. Hence, the algorithm can be seen as being similar to a top-
level DNS domain, such as bt.com, which can be easily divulged to any untrusted party within 
the rendezvous system. In addition, we could expect that the rendezvous point that serves the 
publicly exposed (algorithmic) SId has improved security and resilience mechanisms to cope 
with failures and potential attacks, compared to the individual (private) SIds that are 
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determined by the algorithm. Hence, with the mechanism of algorithmic scope identifiers, we 
allow for building private information networks.  

Summary of Concepts 
The following figure summarizes the PSIRP information concepts together with the resulting 
identifiers.  

 
Figure 2.3 – Overview of PSIRP information concepts 

It can be seen that concepts span from single information items over collections of 
semantically similar items to networks of information. Given that networks of information are 
information themselves, they can be collected together either in new information networks or 
via information collections, with private information networks being one example of these 
collections. We believe that these information concepts are rich enough to map any 
application-specific concepts, such as ontologies or identities, onto these generic concepts 
while being simple enough to build a scalable routing and forwarding fabric underneath. In 
Section 4.1, a more detailed presentation is given of the different identifiers that can be found 
in Figure 2.3. 
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3 Architecture Overview 
This section gives an overview of the functional architecture developed so far in PSIRP. We 
first outline the extent of our architecture before presenting the major architectural concepts 
and parts. We then present the service model and the various APIs of our system before 
delving into the interplay of the architecture components in the so-called component wheel. 
Finally, the components themselves are presented.  

3.1 Extent of the Architecture Work 
Before delving into the details of our architecture, it is important to understand the extent of 
the architectural work presented here. For this, we distinguish horizontal from vertical extent, 
explained in the following paragraphs. 

Horizontal Extent  
Our architecture aims at providing an internetworking solution with a similar role as IP in the 
current Internet. Hence, we need to develop solutions that span from local via intra-domain to 
inter-domain reach, all of which need to scale to the expected dimensions of a future Internet. 
This requires solutions for, e.g., intra-domain forwarding as well as for inter-domain 
rendezvous and topology formation.  

While we present all of these areas within this document, we need to recognize that solutions 
in the inter-domain area are largely in an early stage of development.  

Vertical Extent 
While being centred around the internetworking layer of a traditional layered architecture, our 
work needs to consider not only the interaction with other layers of the architecture but even 
the very nature of layering itself. The latter is targeted, for instance, by the RTFM design 
choice presented in [PSI2008d].  

As a consequence, apart from traditional internetworking functions, e.g., inter-domain routing 
and forwarding, our work also includes considerations on the node architecture (see Section 
3.4), considerations on including traditional transport functions via the notion of helper 
functions (see Section 3.5.4) as well as considerations for the design of applications based on 
our service model work (see Section 3.3). But it also includes considerations on the concept of 
layering itself, e.g., through the component wheel concept (see Section 3.4), which aims at a 
largely layer-less, more modular notion of a node architecture. 

3.2 Architectural Entities and Processes 
The basis for our architecture is a collection of well-defined entities. These entities are based 
on the major concepts for our architecture, most notably the information concepts as 
described in Section 2 and the publish-subscribe communication paradigm that underlies our 
work (see Section 6.4 in [PSI2008d]). With these concepts in mind, we can identify the 
involved entities as follows:  

• Information item: as discussed in Section 2, any data can be labelled with an identifier, 
forming an information item that our architecture can process. At the application level, 
we assume application identifiers of some sort to be used. These are resolved into 
rendezvous identifiers, either directly by the application or via a helper function (see 
Section 3.5.4). The application finally communicates with the network architecture 
through the rendezvous identifier, which is used to match the interest for this particular 
information item between the publisher and the subscriber(s). With this simple labelling 
of data, i.e., forming of information items, we can implement data and metadata 
concepts as outlined in Section 6.1 of [PSI2008d].  
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• Information network (or scope): information item can be grouped into networks of 
information, as outlined in Section 2. For this, a scope identifier is used to enable 
labelling the particular information network to be used. A scope determines the 
elements of the rendezvous system that act on the published data. An information item 
may be associated with one or more scopes and these scopes can be interpreted at 
various levels of abstraction.  

• Information subscribers and publishers, which consume and create information items, 
respectively.  

• Domains, which are administrative network areas that can be connected using the 
inter-domain forwarding architecture. Propagation of information items within and 
across domains takes place via labelling the items with forwarding identifiers. The 
nature of these identifiers and their function is determined by the intra- and inter-
domain forwarding functions. 

Figure 3.1 presents an example overview of the above entities and highlights their 
relationships, based on the current stage of development; these relationships are subject to 
change based on our implementation experience. As discussed before, data packets and their 
associated metadata are published and subscribed to in a domain. Typically, the data is 
associated with one or more application identifiers and one or more scopes. Currently, there 
are still multiple options for the placement of the scoping information; for example, the scope 
may be included in the metadata part of the packet or it may be represented as a separate 
identifier in the packet header. Each application first resolves application identifiers to 
rendezvous identifiers and then hands the rendezvous identifiers to the network, which then 
uses the scopes to properly map each rendezvous identifier to one or more forwarding 
identifiers, both within a domain and between domains.  

Based on these architectural entities, we can identify the following five key processes to be 
implemented in the PSIRP architecture:  

• Rendezvous, which is the process of resolving rendezvous identifiers into forwarding 
identifiers within a given scope. The scope determines the part of the rendezvous 
system that is used by the network. The forwarding identifiers may change as the 
rendezvous state changes. For example, there may be no forwarding identifier 
available when there are no subscribers for a given publication. The three simplistic, 
topology-oriented cases for scopes, reflecting the current usage, are link-local, intra-
domain, and inter-domain scopes. However, we expect that future applications will use 
more semantic-based scopes instead of such topological scopes, implementing, e.g., 
scopes based on social networking structures. The rendezvous and scope identifiers 
are handles to the rendezvous system. Together they uniquely identify the given 
publication and the associated policies and metadata.  

• Forwarding pertains to data delivery within a single administrative domain or across 
multiple domains. While intra-domain forwarding is concerned with local policies, the 
inter-domain forwarding system is configured through the rendezvous process and 
takes into account any inter-domain policies in effect. We note that the routing 
substrate can be either a new protocol operating on layer 3 or it can be an inter-
domain friendly overlay, such as Canon [Gan2004].  

• Topology Management & Formation is responsible for managing intra-domain delivery 
topologies as well as forming inter-domain forwarding graphs for publications.  

• Helper functions are used to extend the core functionality of the network architecture 
and the provided services towards functions such as management and transport.  

• Network attachment is responsible for discovering network attachment points and 
configuring components in such a way that communication becomes possible.  
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Figure 3.1 – Entities of the PSIRP architecture 

With these entities and key processes in mind, we can now divide the architecture into three 
parts, namely the provided service model, the node architecture, and the network 
architecture.  

The service model (outlined in Section 3.3) below defines the service interfaces towards data 
subscribers, publishers, and network services. The node architecture (presented in Section 
3.4) defines how the entities and key processes are organized and how they communicate 
within a single node. The network architecture (presented in Section 3.5) defines how the 
node architecture extends towards the PSIRP network as a distributed set of functions.  

3.3 Service Model and API 
We currently consider four different classes of network services in the architecture:  

1. A low-level page model that exposes the network forwarding and rendezvous/topology 
formation functions  

2. A mid-level memory object model.  

3. A mid-level channel model.  

4. Various high-level service models, including shared state and document models. 

At the lowest level, the size of a publication is one page2 and there is no error or congestion 
control mechanism. Publishers (or higher level API functions as publishing intermediaries) can 
interact with the forwarding function of the PSIRP architecture by sending packets to a 
forwarding identifier (FId) or identifiers (where more than the initial FId may be specified by the 
publisher). Subscribers will similarly choose to listen to selected FIds. To obtain FId 
                                                
2 For transmission purposes, a page is mapped to a single packet. 
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information, the publishers and subscribers interact with the rendezvous (to discover 
subscriber locations) and topology formation functions (to establish policy compliant 
forwarding paths).  

 
Figure 3.2 – Different levels of APIs 

The lowest level API provides a generic exposure of the PSIRP network functionality and may 
be used to implement different communication concepts. One such concept is to provide an 
API that shares shared memory objects from publishers to subscribers. Such memory 
objects may be as low level as the packets themselves or higher level application meaningful 
objects. Publications at this higher level may consist of multiple pages and may have some 
recovery from packet loss. However, full reliability functionality needs to be implemented by 
upper level services. 

Another communication concept is that of channels, where the rendezvous identifier (RId) 
and subsequently established forwarding paths are viewed as group communication channels. 
These channels have a meaning that is defined by the application semantics associated to the 
RId. Such meanings may be "document X", "requests for document X" or they may even 
encapsulate service concepts such as "document X delivered at 512kb/s" or “a printing 
service”. Separate channels may be used for flow control or error signalling. The forwarding 
function of the PSIRP architecture provides unicast and multicast delivery, while the 
rendezvous function may participate in the formation of multi-publisher channels (for example 
to a single subscriber, e.g., a server which subscribes to receive requests).  

Other mid-level APIs may of course be implemented over the lowest level API, however we 
expect the shared memory and channel models to be generally useful. Many different 
specialised APIs (for example, implementing transport functions with customized flow control 
or error recovery algorithms over the channel model) can also be built upon these mid-level 
APIs. Other higher-level functions could include reliable multicast, N→1 and N→M services, 
state sharing, and document models. At this level, we have managed semi-reliable caches, 
indications of document changes, transmission of document deltas, etc.  

In the following sections, the low level model and the shared-memory and channel models are 
defined in more detail.  

3.3.1 Low-Level API 
The lowest level PSIRP network service reflects the services offered by the forwarding, 
rendezvous and topology formation functions within the network. While this is the lowest level 
service, which can be offered, many other communication paradigms with their own higher 
level APIs may be offered above this basic low-level service.  

At this lowest level, the maximum size of a publication is considered to be one packet and 
there are no error or congestion control mechanisms. The packet sent to the network is either 
destined for subscribers (via the forwarding function) or destined for the various rendezvous 
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and topology formation functions whose task it is to provide sufficient information to be able to 
subsequently forward packets to subscribers. Also, the packets to the rendezvous and 
topology formation functions travel via the forwarding function. Thus, the operations described 
in this low-level API can be considered to be layered above the raw forwarding function API 
methods.  

Forwarding  
To implement this level of service, there are basic network-sender and network-receiver 
components attached to the component wheel. They take packet-sized publications and 
forward them over a FId.  

At this level, the conceptual API is very simple: 

• listen(FId) → returns stream  
• mute(stream)  
• forward(FId, meta-data, data)  

This interaction with the forwarding function is by design publish/subscribe in nature since this 
concept flows through all aspects of the PSIRP architecture. However, we deliberately avoid 
over-using the terms publish and subscribe since we reserve these method names for the 
interaction with the rendezvous service.  

At this API level, the FId denotes a channel (to subscribers, rendezvous components, onward 
forwarding components etc.). At the local link, FId is only used to distinguish packets into 
separate channels; however, the node at the end of the link may be configured to forward 
some FIds (while not forwarding others), making packets sent on certain FIds to flow further 
than just over the local link. At this level, the structure and contents of FIds are opaque; all the 
information of which FIds are forwarded, which FIds are listened to by the other end of a link, 
etc, are available only via the rendezvous and topology components. It is expected that at any 
given point of time, the vast majority of FIds will be inactive on most links, meaning that an 
attempt to publish on such a FId will not cause anyone to receive anything.  

The in-packet meta-data is limited to a few bytes (exact number open at this writing), and it 
may be used to carry upper-layer data, such as version, sequence number, signature, or other 
similar data.  

From this service and API point of view, we try to make as few assumptions as possible about 
the FIds. In particular, one should not assume that certain FIds would be forwarded due to 
FId-specific state at the forwarding nodes. Instead, for example, a FId may encode a source 
route, allowing it to be forwarded because it explicitly contains a bit pattern that makes a 
forwarding node to forward any packets containing that pattern. For the current ideas related 
to intra-domain forwarding, see Section 4.6.1.  

The semantics can be defined as follows: calling listen(FId) at one node prior a call to 
forward(FId) at another node, with the same FId, may return the packet provided in the call to 
forward(), depending on whether the delivery tree identified by the FId is configured to flow 
from the publisher to subscriber. In the case of a local physical link, no pre-configuration is 
needed; all that is needed is that a node is listening to a FId and another node at the same 
link is forwarding on the same FId. There is no storage or memory of past events involved at 
this level.  

Rendezvous  
The low level PSIRP network service also includes the interaction with the rendezvous 
components. Although the forwarding functions (and appropriate FIds) are used to 
communicate packets to the rendezvous system, such FIds are managed by the local 
rendezvous component within the API and hidden from the application or higher level 
services.  
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At the time of writing, it is unclear whether the local host, a local network service, or the 
rendezvous function will interact with the topology formation function. For the purpose of 
clarity, it is assumed in this section that the topology formation function is hidden from the 
host, and hence no direct methods are detailed in this API for interaction with the topology 
formation function. Instead, the register methods, described below, utilise the functionality of 
both the rendezvous and topology formation functions.  

The purpose of the rendezvous/topology formation methods is to allow subscribers to register 
their interest and needed topological information to reach them with the rendezvous system as 
well as to allow publishers to determine which FIds they should use in their publication of data 
to the forwarding function. The relevant API is the following: 

• register_provision (SId, RId, lifetime, policies) → lifetime + FId(s) used in forwarding 
• withdraw_provision (SId, RId) 
• register_interest (SId, RId, lifetime, policies) → lifetime + FId(s) to listen to 
• withdraw_interest (Sid, Rid) 

The register_provision method is used when a publisher is ready to commence transmission 
to subscribers and requires forwarding information to do so. As an immediate result, the 
publisher gets notified about the accepted lifetime of the registration. More importantly, as 
soon as the rendezvous system determines that it would be useful for the publisher to actually 
forward data, it provides the publisher with one or more FIds. That is, in the typical case once 
there is at least one active subscriber, the rendezvous system provides the publisher with a 
FId; this may be instantaneous in the case there were subscribers before the publisher. In 
some cases, the rendezvous may provide a FId even if there may not be any subscribers, or it 
may provide multiple FIds, in which case the publisher should publish the same packets over 
all of the FIds. If the rendezvous system decides that it is no longer useful for the publisher to 
publish data, e.g., since there are no more active subscribers, it may forward a path update to 
the publisher stating that there are no Fids to currently forward subscriber data over, at which 
point the publisher should cease forwarding. 

In a similar manner, the register_interest method is used by a subscriber, when it is ready to 
start receiving data. Again, this function immediately returns the accepted registration lifetime, 
and one or more FIds. Again, in some cases the rendezvous may provide the subscriber with 
a FId (or multiple ones) even if there are no publisher yet, and in other cases it may provide 
the subscriber with multiple FIds; the latter might be used, e.g., for swarmed documents. 

In addition to the FIds used for actual data transmission between publishers and subscribers, 
the rendezvous system internally uses additional FIds.  For example, the node-local 
rendezvous component typically needs one or more FIds for forwarding provisioning and 
interest registrations to rendezvous points. Likewise, there will be for Fid(s) that are listened to 
by the publisher or subscriber nodes; that the rendezvous point uses to forward updates on 
FId status to both the publisher and subscribers. 

Publish & Subscribe  
It is likely that the direct forwarding and rendezvous function methods detailed in the previous 
sections will not be exposed to applications. Instead, the lowest level that we expect to be 
used by applications is a combined publish and subscribe interface that manages and hides 
the details of the interaction with the forwarding and rendezvous functions. 
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Subscriber Methods  

• associate(RId, SId)  
• subscribe(RId)  
• unsubscribe(RId)  
• attachPolicy(SId, policy)  
• attachPolicy(RId, policy)  

The most basic subscription method would have been to include both SId and RId in the 
subscription method. However, the separate SId→RId association allows RIds to be managed 
and transferred between scopes without requiring the application to issue an unsubscribe 
request. A single subscribe method for the RId will subscribe to the RId within any associated 
scopes.  

Similarly separate policy management methods allow the policies to be changed without 
needing to unsubscribe and re-subscribe to the RId.  

Publisher Methods  

• associate(RId, SId)  
• publish(RId, data)  
• attachPolicy(SId, policy)  
• attachPolicy(RId, policy)  
• advertise(RId)  

3.3.2 Memory Object Service 
This section discusses a communication model for sharing memory objects, through the 
network, from publishers of new (or revised) objects to subscribers. 

Simple Unreliable Page Service  
We start with a low-level page service where pages can be mapped to packet level 
transmissions in the lowest-level PSIRP service. This concept can be used to individually 
identify and cache individual packets within the network.  

Pages sent or received by this service are assigned pageIDs, which allows for such memory 
to be built for the purposes of caching or retransmission at the next level up. Note that 
pageIDs are not an extension of the PSIRP information concepts (see Section 2) but an 
internal implementation concept for the memory object service model. 

The pageIDs are unique to each FId, allowing one to refer to any page recently sent over the 
network. If the exactly same bit pattern is resent over the same FId, it should be associated 
with the same pageID. In the current implementation design, the pageIDs are computed by 
taking a cryptographically strong hash over the page contents, meaning that the pageIDs are 
statistically unique over all FIds, not only the one FId it is sent over.  

The pageIDs are also intended to be used as a means for error detection, allowing the 
receiving end to determine if the received packet data does not match the pageID.  

Simple Memory-object Service  
On the top of this page service, the service model supports larger-than-page memory objects 
as well as updates to memory-objects. For these, there are rudimentary transport functions 
that implement recovery from data packet loss, but no congestion control or end-to-end 
delivery guarantees.  

At this level, the API can be presented as follows: 
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  a pair of <metadata, memory-object[length]> :=  
 create(credentials, requested-length) 
  MO-RId := publish(SId, tag, pair of <metadata, memory-object> ) 

 

A potential publisher requests a meta-publication and a memory object, indicating the 
requested memory object length. The service provides the metadata and the memory object, 
which may be of different length than what was requested. In practise, the credentials are 
typically attached to the calling process and provided implicitly. The metadata is attached to 
the memory object so that the calling process cannot mix but match them.  

The publisher may fill the memory object with any data it wants, up to the allocated length. 
Once the object contains the desired data, it can then be published. Only the publisher can 
create RIds for memory objects (called MO-RId in the following), as the RId is created as a 
result of the first publication. The memory object may be published several times, either with a 
different or the same tag, resulting in the same or a different MO-RId. If the memory object is 
re-published with the same tag, it is considered to create a new version of the same 
publication. Publishing with a new tag is considered a new publication, instead. 

 

  MO-RId := create_RId(credentials.public, tag) 

 

For creating a MO-RId without actually publishing, anyone knowing the public credentials 
(public key) of the publisher and a suitable tag can create an MO-RId that matches one that 
will result from using the full credentials and the same tag.  

 

  event-stream := subscribe(SId, MO-RId) 
  unsubscribe(event-stream) 

 

A subscriber subscribes to an MO-RId received from a publisher. The same SId that was used 
in the publication is expected to be used.  

As a result of the subscription, the subscriber receives an event stream. In practise, the event 
stream might be represented, e.g., as an open file descriptor that can be used in select() and 
other similar system calls. 

 

  memory-object[length] := receive-notification(event-stream) 

 

Once there is an active subscription, every time the local node learns that a publisher has 
published with the same MO-RId, the subscriber is notified and receives a new memory-
object, representing the corresponding version of the object. 

 

  event-bitmap := receive-notification-delta(event-stream, memory-object) 
  update(memory-object, event-bitmap) 

 

As an optimisation, the subscriber may opt to receive only a bitmap where there is one bit 
representing each page that has changed since the previous version of the memory-object. 
The update() call updates the corresponding pages in the memory object. The subscriber may 
turn some of the 1 bits to 0 prior to calling update(), causing only some of the changed pages 
to be updated. In that way it may, for example, first update the first page of the memory object, 
and only afterwards the other pages. 
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Once a process (publisher or subscriber) no longer needs a memory object, it should dispose 
it by using the free() function.  

 

  free(memory-object) 

 

Emulating lowest-level service  

If it is desired to use the lowest-level service but the system does not allow direct sending to 
FIds, the lowest-level service can be emulated with the memory object service as follows. We 
assume that the local rendezvous has been configured to publish anything placed on the low-
level SId using the given FId. 

 

  low-level-SId := get_sid_for_fid(FId) 
  MO-RId := new_RId(credentials, tag) 
  memory-object := create(credentials, one page) 
  do { 
    publish(low-level-SId, tag, memory-object) 
  } until done 
  free(MO-RId) 

 

This creates a number of page-sized packets, each having a distinct version number and 
page RId, corresponding to the contents.  

At the subscriber end, the subscriber executes the following: 

 

  low-level-SId := get_sid_for_fid(FId) 
  event-stream := subscribe(low-level-SId, MO-RId) 
  do {  
    memory-object[one page] := receive-notification(event-stream) 
    free(memory-object) 
  } until done 
  close(event-stream) 

 

3.3.3 Channel Model 
The presence of publishers and subscribers within the rendezvous system can be interpreted 
as a communication channel between the publishers and subscribers. This channel can have 
different meanings to different applications or internal components of the PSIRP network 
(such as the rendezvous system). For example, a component of the rendezvous system will 
subscribe to an information network (designated by an SId) to receive publication resolution 
requests or subscriptions from end applications.  

To end applications, these channels may be extremely short-lived (for example representing a 
single sensor temperature transmission), or represent a longer-lived concept (such as a 
sequence of temperature readings from the same sensor). Channels that are effectively 
closed down (when the last publisher or subscriber leaves the network) may be re-opened at 
a later date with the same or even new semantics.  

An individual RId may thus represent many concepts. It may be a multicast channel over 
which an item of content is delivered. Several RIds may be used together to layer or chunk the 
content for easier consumption. Alternatively, a RId may be used to receive requests for that 
item of content (which itself may be considered to be information separate from the content 
itself). RIds may also represent flow control or error signalling information concerning the 
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receipt of packets by a single subscriber. RIds may also be used to duplicate the channels 
bound today to network locations (IP addresses), hosts (domain names), or individuals’ email 
inboxes.  

The low-level PSIRP service API can already be considered representing a channel model at 
both the rendezvous and forwarding functions. As discussed, the presence of publishers and 
subscribers can be considered to form a channel within the rendezvous function. This channel 
is used to transfer subscriber location information (abstracted to forwarding paths, represented 
by an FId) to the publishers. If the advertisement methods are used, these form channels for 
subscriber activity information to be transmitted to potential publishers.  

The forwarding path can also be considered to represent a channel instantiation of the 
publisher/subscriber information within the rendezvous system. This channel then provides 
the fast forwarding path for data between publishers and subscribers. One problem is how to 
avoid this forwarding channel becoming stale or out of date when subscribers change. To 
avoid this, the topology formation function must be revisited to update the forwarding path.  

Specific channel services may then be created over the low-level PSIRP API. These specific 
channel services can provide additional or more specific services such as flow or error control. 
We can also implement other communication modes such as duplex channels or many-to-
many group communication channels from the underlying primitives.  

3.3.4 Higher-level Service Models 
In this section, we briefly describe a number of higher-level services, utilising the underlying 
memory object and channel models. The two considered interaction techniques are many-to-
one services and concast. The former pertains to the way many clients access a single server, 
and the latter focuses on combining on-going communications from multiple senders to a 
single receiver. 

Many-to-one Services  
There are different ways to implement services where many agents communicate with one (or 
a small number) of central servers. In this section, we briefly outline three possibilities, two 
utilising the basic services provided by the PSIRP architecture and one requiring a more 
active role from some of the forwarding nodes.  

It is worth bearing in mind that there appears to be a large difference in terms of resource 
consumption between supporting N→1 in the rendezvous system compared to the forwarding 
path. For the rendezvous system, N→1 signalling simply means that we allow multiple 
publishers to request forwarding paths towards the subscriber; see the usage of scopes 
below. When the publisher obtains a forwarding path, the path is typically a 1→1 path 
between the publisher and the single subscriber.  

The concept of a N→1 forwarding path does not make much sense for source controlled 
forwarding (e.g., using the Bloom filter approach described in Section 4.6.1) and doesn't seem 
to add much in the alternate model where we configure forwarding state in the network. On 
the other hand, supporting concast-like service may be useful, but their economics is an open 
question at this point.  

Using scopes as a signalling mechanism  

Most types of scopes can be used as a rudimentary many-to-many signalling mechanism. To 
do so, the parties interested in receiving notifications of new communication requests, e.g., 
the central server(s), need to subscribe to the scope itself. As a result, whenever any other 
party creates a new publication within the scope, the scope-subscribing parties receive a 
notification that a new RId has been assigned to the scope. As a result, they can subscribe to 
the new RId, receiving the new publication. Figure 3.3 outlines the required signalling. 
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Figure 3.3 - Using a scope to initiate client-server-like communications 

Comparing with what happens in the present Internet, one can consider the first two 
messages as corresponding to a listen() system call or acquiring a DHCP lease in a typical 
TCP/IP implementation. In the TCP/IP case, a listen() involves no communication outside of 
the node; on the other hand, a typical DHCP request/reply involves at least two messages. 
The second phase of making the SId known and the client acquiring the SId can be compared 
to registering an IP address at the DNS in the current Internet. The final phase of the client 
publishing a meta-data document and the server interpreting it can be compared to the 
connect() system call and TCP SYN exchange.  

Inside the network, scopes are implemented by the rendezvous system. As described in 
Section 3.5.1, rendezvous may be implemented in different ways, from a completely 
decentralised fashion to a centralised service. Hence, the fine details of how a new scope is 
created, how a new publication is registered at the rendezvous, or how any parties 
subscribing to the scope get notified, all depend on how the rendezvous is implemented. Note 
also that the signalling diagram is simplified in the sense that it collapses the rendezvous point 
(RP in Figure 3.3) and caching of data. In the typical case, the metadata might not be returned 
directly by the rendezvous point but instead from either the client or some cache.  

Reverse channel setup using invitations  

Specific invitation documents can be used to initiate communication. In practise, the party 
willing to communicate (server) publishes an invitation and makes its SId and RId well known. 
Now, anyone wanting to communicate with the party may subscribe to the RId and receive the 
invitation3. The invitation contains details of how to communicate with the serving party, such 
as the algorithmic RIds that the party subscribes to.  

Inside the network, the rendezvous system is involved multiple times. First, the serving party 
creates the invitation (memory object or channel) and registers it at a rendezvous service. 
Then, at a later time, a client subscribes to the invitation, typically by publishing a subscription 
at a lower level scope and making the lower-level rendezvous to deliver a notification to the 
upper-level rendezvous. The upper-level rendezvous arranges the client to receive either a 
recent copy of the invitation (for document-like invitations) or join the invitation (for channel-
like invitations). Finally, depending on the instructions in the invitation, the rendezvous may be 
                                                
3 Note that it appears possible to provide invitation-like services both using the memory object and channel models, 

though the details differ slightly. 
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involved a few more times in order to create or subscribe to the actual documents or channels 
involved in the communication. 

Figure 3.4 outlines the required signalling for this case. Note that the content of the invitation 
is left open in this description. We expect algorithmic identifiers or HIP-like puzzles to play a 
role in the actual invitation, allowing variation over the RIds used by the clients.  

Also note that the sequence diagram is simplified, and the actual behaviour is likely more 
complicated, depending on how the RP will be implemented.  

 
Figure 3.4 – Using an invitation to initiate client-server-like communications 

Concast-like services  
Finally, we consider the case where merely initiating communication from many points 
towards a single point is not sufficient, but where there is a genuine need for many parties for 
continuously sending information towards a single one. We call this service concast-like, since 
it involves active participation by forwarding nodes within the network. At this point, it is open 
whether such active participation should always be implemented in the slow path, or if there 
are variants of this service that are frequent enough to warrant fast path implementation.  

In the following, we consider the simplest variant where there are two publishers/senders and 
one subscriber/receiver. The service is assumed to be channel-like; it is an open question if a 
concast-like service can be modelled on the top of the memory-object service.  

The simplest case looks like the following, A and B being the publishers, a and b their 
respective data streams, CP being the connecting point / concast point, and a,b or f(a,b) the 
resulting data stream. 

 A--->>-a-- 
                   \ 
                   CP--->>---a,b..    or    f(a,b)---S 
                   / 
 B--->>-b--  
 

Here, the CP receives messages from multiple directions and processes them into a single 
output. If its memory gets full, it may signal upstream to buffer their messages. This kind of 
tree would protect the bottleneck of the receiver network from DDoS attacks because 
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congestion control in branching nodes would stop messages near the senders. Here the 
semantics are that the receiver wants to receive all messages sent to him, and the messages 
are buffered near the senders until received. These kinds of concast points could also be used 
to perform some function on the inputs and then just send the output of the function.  

The service requires the CP to be actively involved in processing the messages along 
traversing towards the tree root. The current expectation is that the operation will take place at 
a separate processor at a forwarding node and not as a part of the fast-path processing. The 
actual forwarding identifiers used at A→CP, B→CP, and CP→S can all be distinct. The 
rationale is that CP will need state to process the messages anyway, and therefore the state 
can also include the required FId mappings. That is, at minimum the CP needs to separately 
keep track of the amount of data arriving from the different sources so that it can request 
upstream buffering and selectively drop messages in the case an upstream does not comply. 
Using separate FIds for each flow from upstream is likely to make this job easier.  

The exact signalling for creating the required state is open at the moment, as is all explicit 
signalling along forwarding paths. However, one potential approach is described in Figure 3.5 
below, and can be described as follows. 

1. The subscriber S requests a concast scope SC from a rendezvous service RS 
providing concast services. This results in a scope ID SC-SId and a special document 
SC-RId that S will use to signal back to RS.  

2. S subscribes to SC-SId.  

a. A meta-subscription message, containing SC-SId, is passed from S to RS 
through the slow path. The slow path accumulates the information needed for 
determining FIds towards S.  

3. S publishes an empty document at SC-RId.  

4. A new publisher A wants to join the concast group.  

a. A publishes a meta-document MD at SC-SId.  

b. The meta-document gets assigned MD-RId.  

c. A meta-meta message, containing MD-RId, is passed from A to RS through the 
slow path. The slow path accumulates the information needed for determining 
FIds from A.  

5. The RS gets notified about the meta-meta message. It updates and re-publishes SC-
SId.  

6. S gets a notification of MD-RId.  

7. S subscribes to MD-RId.  

8. S gets a notification that it has received the contents of the meta-document MD.  

9. S consults the contents of MD and decides to accept A as a concast sender.  

10. S adds information about A to the special document and re-publishes it under SC-RId. 
In practise, S adds some RId, A-RId. that it has agreed with A through MD.  

11. RS gets notified that the special document SC-RId has been updated.  

12. RS consults the contents of the SC document and finds a new RId, A-RId.  

13. RS asks the topology layer to add A, as identified by A-RId, to be added to the concast 
group ending at S.  

14. The topology layer determines a unicast FId from A to a CP, using the information 
collected by rendezvous and the topology itself.  

15. The topology layer signals the CP to add the FId to the concast tree.  
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16. The topology layer signals the unicast FId to A, allowing A to start sending fast-path 
messages to CP. 

 

 
Figure 3.5 – Simplified signalling for adding a node to a concast-like tree 

Again, note that the sequence diagram is simplified, and the actual behaviour is likely more 
complicated, depending on how the RP has been implemented. 

3.4 Component Wheel 
The PSIRP conceptual architecture is based on a modular and extensible core, called the 
PSIRP component wheel. The architecture does not have the traditional stack or layering of 
telecommunications systems, but rather components that may be decoupled in space, time, 
and context. The idea of such a layer-less network stack has been proposed before, for 
example, in the Haggle architecture [Hag2007]. The novelty of the PSIRP proposal is to use 
publish/subscribe style interaction throughout the conceptual architecture, and thus support a 
layer-less and modular protocol organization.  

Figure 3.6 presents an outline of the architecture with the PSIRP component wheel. At the 
edges of the wheel, we have APIs that allow for using different networking features. The figure 
illustrates a few typical components needed in the wheel for inter-domain operation, such as 
forwarding, routing, rendezvous, and caching. The wheel may also include various other 
functions that are used to implement additional network features, such as congestion and flow 
control and reliable data delivery. The “keyhole” at the top of the wheel indicates the open 
design, i.e., applications may insert new components to the wheel during runtime. 

The node architecture (see Section 4.2) is structured around the component wheel. The 
applications, components (akin to Haggle managers), and the network and disk interfaces are 
all attached to the local blackboard (BB), at the centre of the component wheel. The 
blackboard is used to share publications, both data and meta-data, and the pub/sub paradigm 
is used to signal changes to publications. The blackboard and pub/sub are used to realize a 
reflective protocol suite that can cope with both static and dynamic changes.  
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Figure 3.6 – PSIRP component wheel 

When a publish operation is invoked by an application, memory for the publication is allocated 
and subsequently the publication is placed in the local blackboard (see Section 3.3.2). When 
an application wants to subscribe to some data, it issues a subscribe call. This subscription 
will create an object that maps to the content received based on the issued subscription. The 
subscription object can export methods to access the content or it can map directly to system 
memory or permanent storage.  

In the memory object API, the kernel is usually responsible for allocating memory for the 
publication objects and subscription objects, correspondingly. For a subscription object, the 
kernel provides the application with a memory object, initially without any content. The actual 
pages are provided as they are needed or become available. For local IPC, the actual 
memory pages are shared between the publisher, the black board, and the subscribers. Only 
if the publisher proceeds to prepare a new version, or a subscriber wants to directly modify the 
data it has subscribed to, copies of the affected memory pages are created.  

The scope and publication metadata may store RIds, acting as pointers to other metadata or 
data areas. These objects can then be subscribed to by applications or system components.  

A local subscriber of a publication can subscribe to receive a notification when a certain event 
occurs. For example, if a component wants to know when a new publication is added in the 
local blackboard, it subscribes to notifications about updates to all locally known scopes. As all 
publications belong to one or more scopes, including the scopes themselves, addition of new 
scopes can also be detected. To allow bootstrapping (of the local system and the RP) and an 
ad-hoc mode of operation, a special node-local Scope 0 is always created during the system 
startup.  

All system metadata are potentially visible to all components through the blackboard. Hence, it 
is easy to add a new component into the system without having to change the basic system 
calls and the API. For instance, it is possible to create a special caching component that 
subscribes to all local publications and writes them to some external media.  

The component wheel uses the blackboard to maintain an internal execution plan for the 
components. This plan determines the sequence of components that handle an element 
added or updated to the blackboard. The plan may allow two components to start processing 
blackboard data at the same time. The plan is necessary in order for components to act on 
data in the proper order, for example, first consult the cache and only then perform actual 
network signalling.  
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Figure 3.7 – Example interactions in the component wheel 

Figure 3.7 presents example interactions in the component wheel and highlights how a 
subscription request may be processed. First, a subscription memory object is created in the 
blackboard. The component wheel then informs the components about the new subscription 
according to the component execution plan. In the example, the cache component is first 
consulted, and then the subscription memory object is handled by the routing and forwarding 
components, respectively. The subscription is then sent on the network using the low-level 
API. Later, a publication is received that is associated with the subscription. This results in a 
notification to the routing and forwarding component and the insertion of the publication as a 
memory object in the blackboard. The components are again invoked on this object based on 
the execution plan. The object is added to the cache and then a notification is generated 
towards the subscriber. 

3.5 High-level Overview of the Components 
In this section, we present the key components of the PSIRP architecture. As we have 
discussed, the component wheel is the central element of a single PSIRP node; however, the 
distribution of information is achieved through topology management, forwarding, and 
rendezvous. These components are presented in Figure 3.8. The arrows in the figure illustrate 
information flow during basic data delivery.  
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The topology function is responsible for mapping, monitoring, and coordinating physical 
network topology information. The rendezvous implements the function of determining the set 
of subscribers and publishers for a given publication and instructing the underlying network 
machinery to perform the needed data delivery. The packet forwarding function is responsible 
for using the forwarding information provided by the rendezvous and topology functions, and 
for making forwarding decisions on the forwarding nodes. 
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Figure 3.8 – Overview of PSIRP components 

3.5.1 Rendezvous 
The routing function of the PSIRP architecture is divided into several functions. In addition to 
the fast-path packet forwarding, routing is needed for information level control message 
forwarding that enables the forwarding function. This control plane like functionality in a 
publish/subscribe architecture is (a) to match the interests of senders and receivers and (b) to 
form a suitable and policy-compliant inter-domain topology between publishers and 
subscribers that can be used for fast forwarding. In the PSIRP architecture, the former 
function is called rendezvous and is the focus of this section.  

The main objective of the PSIRP rendezvous system is to associate subscribers and 
publishers of a given scope and rendezvous identifier with each other, implementing the 
PSIRP design principle PS2 (Information scoping). In this context, rendezvous is inherently 
related to the notion of publication scoping in that a scope (amongst other things) determines 
the subset of rendezvous nodes that are responsible for a given publication and/or 
subscription. The importance of the services offered by the rendezvous system cannot be 
understated; rendezvous is crucial in providing a control plane for connecting publishers and 
subscribers in a policy-compliant fashion both within and between administrative domains.  

Within the PSIRP architecture, rendezvous exists in many ways.  At the lowest level, the 
node-local blackboard implements node-local rendezvous. Above that, we expect to have 
distributed rendezvous over each local link. However, in most cases the rendezvous service is 
accomplished through specialized functions that operate between physical network devices 
known as rendezvous nodes (RNs). RNs host rendezvous points (RPs), which can be viewed 
as logical, fixed or non-fixed indirection points for pub/sub network communication. 
Rendezvous nodes within a collaborating set of network domains form rendezvous networks. 
These networks can be viewed as units of rendezvous deployment. Finally, global reachability 
(i.e., the ability to establish pub/sub-relations in an inter-domain sense) requires rendezvous 
network interconnection, allowing pub/sub signalling to be passed between rendezvous 
networks.  

A refinement of the original end-to-end (E2E) principle by Clark et al. [Cla2007] outlines the 
importance of trustworthiness of execution rather than particular placement of functions in 
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endpoints. This so-called Trust-to-Trust principle is captured as our design principle G1 and 
considered in our design in the sense that rendezvous should occur at locations within the 
network that are trusted to operate correctly in terms of communal, economical, and 
functional requirements. Bearing this in mind, the process of determining the optimal 
network locations for RPs must account for various environmental factors as well as inter-
domain traffic policies and pub/sub scoping mechanisms. The specific nature of these 
concerns is obviously highly implementation dependent, and further research and 
development of the PSIRP architecture is required in order to arrive at a conclusive set of 
evaluative criteria. It is expected that the scoping mechanism, with different polices associated 
with different scopes, may help in achieving a scalable solution.  

Due to its importance in policy enforcement and defining (often user-created) information 
scopes in various situations, the rendezvous system constitutes a relatively well-defined 
environment where tussle is likely to commence [Cla2002]. The rendezvous system is 
therefore a policy enforcement point in the architecture and a mechanism for supporting 
freedom of choice for network end-points. On the abstract level, some aspects of the 
rendezvous functionality can be found in many existing or proposed distributed systems, for 
example HIP [Mos2008][Egg2004], IP multicast (RFC2362), i3 [Sto2002] and Hi3 [Nik2004], 
FARA [Cla2003], PASTRY [Row2001], and HERMES [Pie2004].  

Figure 3.9 presents an overview of rendezvous within local, intra-domain, and inter-domain 
network environments. As discussed in the previous section, the rendezvous entities involved 
in each of these settings are necessarily determined via scopes (see Section 2). As briefly 
discussed above, the inter-domain rendezvous is further subdivided to rendezvous within and 
between rendezvous networks (see Section 4.4). 

 
Figure 3.9 – Different levels of rendezvous 

A rendezvous identifier (RId) is associated with policy-compliant data dissemination graphs for 
publication delivery, both in the local domain (intra-domain) and between domains (inter-
domain). The rendezvous identifiers are chosen from within a large enough set to provide a 
probabilistic guarantee of uniqueness without requiring a central allocation authority. 
Applications may resolve application identifiers, which are contained within published data, 
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into rendezvous identifiers. It is then the responsibility of the topology formation function (with 
assistance of the rendezvous function) to find suitable data transit and delivery paths in the 
network and denote them with forwarding identifiers (FIds). This resolution from a rendezvous 
identifier to a set of forwarding identifiers is based upon the rendezvous identifier in 
conjunction with scoping (as identified through the scope identifier) and policy mechanisms. 
The breadth of reference of given FIds is variable, potentially limited to single hops or 
dynamically expandable to encompass full multicast trees.  

Rendezvous state is created to allow subscriptions and publications to meet within a 
rendezvous node hosting the specified scope. Subscriptions and pre-publication notifications 
(or advertisements) are utilised by the rendezvous system to create partial forwarding state 
from publishers towards subscribers. When a publication becomes active, i.e., when there is 
both an active publisher and one or more active subscribers, the rendezvous system instructs 
the topology function to complete the forwarding path by mapping the rendezvous identifier to 
intra-domain and inter-domain forwarding identifiers. This late mapping can be used to 
implement dynamic policies, such as inter-domain routing and caching.  

The rendezvous system (in combination with the topology management and formation 
function, see Section 3.5.3) ensures that neither traffic policies nor publication/subscription 
policies and scopes are violated. One design goal for the rendezvous system is that the 
overall network overhead remains within reasonable bounds. The system should dynamically 
adjust its operational characteristics and control tradeoffs between configuration latency and 
data delivery overhead.  

 
Figure 3.10 – Inter-domain rendezvous within a rendezvous network 

In practice, inter-domain traffic policies impose effective limitations over the distribution of 
rendezvous state between different network domains. Figure 3.10 illustrates a sample inter-
domain rendezvous scenario involving a network with ten domains. Those RNs that are 
selected to handle inter-domain coordination are likely responsible for providing a view of the 
entire local domain to neighbouring domains. Here, the dashed lines represent transit 
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relationships between domains and solid lines represent peering relationships. In this 
example, advertised publication routing state is distributed to all immediate peers and 
providers (solid arrows). Subscriptions are routed to siblings and providers (dashed arrows), 
and follow advertised publication routing state when encountered (in domain H in this 
example). This structure expressed in this example denotes one possible inter-domain 
methodology for rendezvous within a rendezvous network that arises from existing business 
relationships amongst separate administrative domains. 

3.5.2 Forwarding 
The packet forwarding function implements the efficient packet delivery through the network. 
In the PSIRP design, this function is not responsible for locating the publication (implemented 
by the rendezvous function, see Section 3.5.1) or creating the path from the source to the 
destination (implemented by the inter-domain topology formation function, see Section 3.5.3). 
Instead, by using the forwarding information provided by the rendezvous and topology 
functions, the forwarding function makes decisions on the forwarding nodes. In addition to the 
forwarding decisions, depending on the selected solution, some additional operations can be 
considered to be its task, such as switching between different forwarding identifiers.  

The forwarding has been divided into two separate areas: intra-domain and inter-domain 
forwarding. On a high level, the difference between these different forwarding areas is that in 
the intra-domain case, the party managing a given network domain is more likely to control all 
the nodes and information inside the domain. Therefore, the system can base the forwarding 
decisions on this information. However, in the inter-domain forwarding case, the information 
that is available from the separate domains may be limited (e.g., the internal structure of the 
network or local policies for intra-domain forwarding), and also the amount of information that 
is required for creating forwarding paths end-to-end may exceed the processing capabilities 
for calculating the forwarding paths. In other words, the division makes it possible to distribute 
the required path calculation to various parts of the network.  

The current results suggest that it is not feasible to use a single forwarding identifier from data 
location to subscribers, if the complete path (tree) spans several domains, as the per-packet 
overhead may be high and policy issues may also arise. This problem can be avoided by 
separating the forwarding into intra- and inter-domain parts. Furthermore, scalability can 
potentially be improved by recursively introducing additional levels of hierarchy. 

Intra-domain Forwarding 
The main design target is to provide a forwarding mechanism that does not rely on end-to-end 
addressing schemes, can be used for multicasting, and does not create too much state 
information in the forwarding nodes. It is assumed that the size of a single domain is limited, 
e.g., within a metropolitan area network. This is important when considering the topology 
management function (see Section 3.5.3) that needs to create the forwarding identifier for 
each publication. Also, the information that must be placed into the packet header is limited, 
when compared to the inter-domain forwarding case with its requirement of Internet-wide 
scalability.  

Our initial work on a Bloom filter based forwarding mechanisms (see Section 4.6.1) indicates 
that Bloom filters can be seen as a suitable and scalable candidate for domains sizes up to 
metropolitan area networks [Jok2009], supporting also native sparse multicast, without 
maintaining any state information in the network. For dense multicast, a small amount of state 
information is required to be maintained in the forwarding nodes. 

Inter-domain Forwarding 
Solutions for inter-domain forwarding should avoid the maintenance of too much state 
information in the network nodes. While the most obvious solutions are based on switching 
the forwarding identifier on the domain borders based on the rendezvous identifier in the 
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packet, the problems arise when the number of simultaneous publication transmissions is very 
high. Other types of solutions are needed to support a huge amount of simultaneous 
transmissions, still keeping in mind the requirements for scalability, non end-to-end addressing 
scheme, and efficient multicast support. 

Relation to Rendezvous and Topology Management and Formation 
The forwarding function itself is not capable of creating the required forwarding information for 
different publications. Thus, the forwarding layer relies on the forwarding information created 
within the topology management and formation function (see Section 3.5.3). This function is 
capable of determining a suitable forwarding graph, both locally for intra-domain forwarding, 
as well as globally, for inter-domain forwarding. The forwarding system uses the forwarding 
identifiers received from this function to efficiently forward the packet from the current data 
location to the subscriber.  

Depending on the solution that will be adopted for the inter-domain forwarding, the forwarding 
function may handle the packet transmission end-to-end, either using a single forwarding 
identifier, using multiple, stacked, forwarding identifiers in a single packet, or by switching 
forwarding identifiers in suitable places. However, it is also possible that the topology function 
may have to be contacted at some points, if such a solution is found to be suitable during the 
forthcoming research.  

3.5.3 Topology: Management and Formation 
The PSIRP architecture assumes a structure of autonomous systems being interconnected via 
some inter-domain mechanisms, similar to the current Internet. These systems are assumed 
to be individually governed by organizations, which are responsible for the optimal utilization 
of their resources. With this in mind, topologies are formed and managed within two different 
realms, namely at the intra-domain and inter-domain levels. The following describes first the 
intra-domain management before outlining the inter-domain topology formation. 

Intra-domain Topology Management 
Within each domain, we intend to enable domain-specific topology management schemes in 
order to cater to the particular aspects of each involved technology within that domain. For 
instance, we can foresee an intra-domain topology management that is optimized to a mesh-
like operation of wireless nodes that form said domain. Or we can have MPLS- (multi-protocol 
label switching) like topology management for fixed networking domains. The optimization and 
organization of the resources required to forward PSIRP primitives and data is handled by a 
dedicated function, the topology management (TM) function, within each domain. This 
function also holds information about peering relations to other autonomous systems, this 
information being used in the processes of inter-domain topology formation and forwarding. 

Inter-domain Topology Formation 
Based on the intra-domain forwarding functionality, the function of inter-domain topology 
formation (ITF) is responsible for constructing a forwarding graph that connects publishers 
and subscribers residing in different domains. This forwarding graph is used by the inter-
domain forwarding function to deliver data between the set of publishers and subscribers. One 
or more functional ITF components may exist with the potential for creating a market for inter-
domain peering relations.  

3.5.4 Helper Functions 
We use the term helper functions to cover the spectrum of various components and software 
entities that are neither responsible for the core network service, nor can be considered as 
traditional applications either. Instead they provide additional network (or associated) 
capabilities. Common examples of helper functions in today's networks would be network 
management solutions (such as SNMP), diagnostic tools (ping, traceroute, tcpdump), caches, 
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proxies and so on. While not absolutely essential to the operation of the network, they will play 
a major role in any operational deployment of the network architecture, and should, in our 
opinion, be already considered during the architecture design phase. Within the node 
architecture, implementing the component wheel (see Sections 3.4 and 4.2), the helper 
functions can access the various functions in the wheel through the memory object API (see 
Section 3.3.2).  

The various helper functions that are discussed in more detail in Section 4.3 fall into several 
categories, depending upon their positioning in the architecture including network 
management functions, remote service functions, and host service functions. We discuss in 
particular how these helper functions are foreseen to operate using the basic API and 
publish/subscribe paradigm. In several cases, we find that the publish/subscribe 
communication model is very natural for many of the helper functions, such as content 
encoding and protection or network management. We also discuss in Section 4.3 the relation 
of the various helper functions running on individual nodes in relation to the blackboard 
paradigm and the component wheel architecture selected for the implementation.  

3.5.5 Network Attachment 
In order to communicate in a network, a node must be attached to at least one point, located 
at the next hop of a data link that provides access to further nodes. In addition, a node must 
know a set of configuration parameters, including various identifiers as well as, for example, 
security-related information. The task of setting up, maintaining, and renewing this kind of 
state is handled by the network attachment component. That component handles discovery 
of attachment points, authentication of nodes and users, their authorization to use network 
services, as well as providing configuration information to entities involved in the attachment 
process. On more detailed level, these essential attachment operations can be described as 
follows:  

• Network and attachment point (AP) discovery can provide information on compatibility, 
identity, services, policies, etc. in addition to attachment initiation parameters. AP 
selection and attachment procedure bootstrapping are related to this phase.  

• Authentication/authorization (possibly mutual) of users and nodes implies verifying 
their identities and/or access rights. Explicit or implicit contracts regarding 
compensation for services may be established or checked at attachment time.  

• Configuration includes exchanging and setting up identifiers (FId, SId, RId) needed for 
communication, for example with the nearest forwarding node and with rendezvous 
points (rendezvous bootstrapping). Another notable task related to configuration is the 
negotiation of security parameters (e.g., key exchanges, TESLA bootstrapping, etc.).  

• Change of attachment points, which is closely related to mobility, requires the initiation 
of communication with new APs, and possibly re-authentication and re-configuration. 
States for publications and subscriptions also need to be updated (see Section 5.1).  

Section 4.7 provides a more detailed discussion of the network attachment function and 
component. 
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4 Architecture Components 
While Section 3 presented a high-level overview of the different architectural components, the 
following section delves deeper into the main technologies and solutions being developed for 
these components. 

4.1 Identifiers 
Different identifier concepts are used within the PSIRP architecture, as outlined in Section 2. 
The following sections present the different identifiers being used within PSIRP. 

4.1.1 Application (Level) Identifiers (AId)  
Applications can use many concepts including flat and structured identifiers and namespaces 
to identify relevant objects and information. Such AIds can be used to represent many 
different concepts from people to network locations and devices, units of information, 
communication sessions, geographical location etc. Although some standardisation efforts 
have emerged to consolidate identification and naming schemes, we can expect that 
applications will continue to use diverse mechanisms to meet their own needs. Application 
names and identifiers are also likely to follow human readable or meaningful structures, 
meaning that the utilisation of the identifier space is not uniform.  

In the PSIRP architecture, applications are expected to continue to use their own identification 
and naming schemes. Where such AIds form the basis of communication between 
subscribers and publishers, they will be resolved into network Rendezvous Identifiers (RIds). 
Applications will use many different models and services for performing this resolution 
including search engines and directory services, announcements of new AId->RId mappings 
over the network and fixed algorithmic mappings of content to RIds (such as hashes of the 
content or primary attributes). 

4.1.2 Rendezvous Identifiers (RId)  
Rendezvous Identifiers (RIds) are used within the PSIRP network by the rendezvous 
functions. Their primary goal is to allow subscribers and publishers to meet within the 
rendezvous system by using a RId that is known to both parties.  

Thus, at the application level a RId represents some meaningful concept about which the 
publishers and subscribers wish to communicate. For example, a RId may be used to 
represent a social group (for group communication) or be used to transmit a unique item of 
information represented by the RId. Some rendezvous systems and transport mechanisms, 
such as the shared memory object system implemented within the PSIRP testbed, may 
enforce stricter notions of the meaning of a RId. 

4.1.3 Scope Identifiers (SId)  
Scope Identifiers (SIds) can be considered a specialised subclass of rendezvous identifiers 
(RIds) that are used by the rendezvous system of the PSIRP architecture to aggregate other 
rendezvous identifiers. Publications and subscriptions to a RId will be made within a context of 
a SId, and hence will be seen by the components of the rendezvous system that have 
subscribed to that scope identifier. A particular RId can be assigned to different SIds, as also 
outlined in Section 2. In technical terms, we can observe that both publications and 
subscriptions to a RId are themselves publications to the SId. This underlying publication to 
the SId is used to forward the RId publications/subscriptions to the interested rendezvous 
system components (that have subscribed to the SId).  

There are a number of reasons for maintaining a separately controlled scope for each 
publication:  
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• To allow the publishers and subscribers to select a scope and to migrate information 
between scopes such that interests are grouped together. This provides a key benefit 
to the network as subscriptions may be aggregated into more scalable scopes, 
particularly for inter-domain management. This also isolates the inter-domain 
rendezvous system from the churn in RId interest and the resultant signalling traffic.  

• To allow aggregate operations on the scope, such as access control and other 
metadata controlled operations, e.g., defining a scope-level caching policy. This can be 
used by the applications to manage sets of information in a scalable fashion.  

• To allow separate publications to have shared control of the dissemination through the 
scoping mechanism, yet allowing each publication to be separately authenticated. For 
example, multiple publishers, all publishing to a single scope, can still be separately 
identified by the network.  

To the application, a scope represents an information network (see Section 2), or a collection 
of whatever information the RIds represent. Through the use of a single scope identifier, such 
collections can be communicated with the assistance of a single trusted part of the 
rendezvous system where additional policies may also be enforced. 

4.1.4 Forwarding Identifiers (FId)  
Forwarding identifiers are used by the forwarding function of the PSIRP architecture to 
communicate data between publishers, subscribers, and system components. Where RIds 
and SIds are used by the rendezvous system (on the slow path), FIds are used by the fast 
forwarding fabric. This enables the operation of a scalable and flexible rendezvous system 
that just carries the publication and subscription requests. For this rendezvous network 
achieving high bandwidth, low latencies, or a stretch close to one is not critical.  

However, the bulk of the data between the publisher and subscribers is carried directly over 
an established forwarding path (as a result of previous publication and subscription requests). 
The forwarding function provides the ability to create efficient forwarding paths over high 
performance communication nodes for the information transfer. It is expected that the PSIRP 
forwarding function will also fit well with emerging label switched and optical networks.  

There are two models for setting up a forwarding path, presented in the following paragraphs.  

Source-controlled packet soft state  

In the source-controlled model, the publisher requests the rendezvous system and the 
topology formation function (see Section 4.5.2) to identify the subscribers and form a domain 
level (multicast) path to the subscribers. The publisher then uses the encoded path 
information as a forwarding identifier when sending publications. In this approach, the FIds 
identify partial distribution trees (or even single links) that can be determined via the 
forwarding state in the packet header. In the current PSIRP implementation, this approach is 
realized via Bloom filters which are used to encode the forwarding paths directly into the 
packet headers.  

At the inter-domain topology level, such Fids identify inter-domain adjacencies (conceptual 
links between autonomous domains), while within a single network they may relate to 
established multicast trees to existing subscribers, fragments of paths, or even single links.  

This approach has the benefit of keeping state out of the network and allowing local control of 
how publisher’s data is routed over the network. A number of disadvantages are also evident, 
such as the need for the publisher to receive updated FIds from the rendezvous function in 
order to identify new network domains that have subscribers or to react to changes in the set 
of subscribers. Another problem is that the publisher may retain the ability to send data to the 
subscribers even after they have unsubscribed from the rendezvous system. Thus such 
forwarding identifiers clearly need to be cycled or refreshed within the network.  
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In-network state  

An alternative approach to forwarding is to configure FId switching state within the forwarding 
nodes. In this approach the publisher only identifies an initial Fid, which may then be switched 
to other Fids until the information arrives at subscribers.  

The actions of publications and subscriptions on the rendezvous and topology formation 
functions are used to configure forwarding paths across the network. FIds are still used to 
identify path fragments within the networks, but these now serve as a basis of communication 
between the forwarding nodes and the topology formation functions.  

4.1.5 Algorithmic Identifiers (AlgIDs)  
Algorithmic Identifiers are defined as identifiers that have been created automatically by a 
function from an existing identifier or identifiers. This allow for implementing the concept of 
information collections, as introduced in Section 2, i.e., a collection of semantically similar 
information items (the semantic similarity being represented by the algorithmic determination 
of the individual Ids).  

This algorithmic relationship enables tests to be performed to detect relationships between 
two or more identifiers. Such relationships may include: 

• Ordering. Does one identifier (immediately) precede another, for example for a 
sequence of information? This can also be used to determine if an identifier is within a 
range of information objects.  

• Composition. Is one identifier contained within a set specified by another (for example 
to determine whether a fragment of information belongs to a larger item of content)? 
Such sets may be exclusive (an item cannot appear in more than one set) or non-
exclusive.  

• Completeness. Do we have all the identifiers that compose another information object 
(which may or may not have its own identifier)?  

Furthermore, given one or more identifiers we may also wish to automatically generate the 
identifiers for related information in order, for example, to subscribe automatically to extra 
information. There are many potential applications for this, including automatically deriving 
identifiers for information fragments, calculating the next identifier for a sequence of sensor 
events, deducing the identifier used for flow control information etc.  

Obviously, the network cannot prevent applications from generating their RIds and SIds 
according to various functions. This edge host processing of algorithmic identifiers does not 
concern the network, which will just see a series of seemingly unrelated identifiers. However 
there are also a number of potentially useful functions that the network or transport functions 
can provide if they can generate and test relationships between identifiers. The next 
subsections present examples for these potentially useful functions. 

Subscription Management  
Information may be arranged as the leaves of a tree, with upper tree nodes representing 
collections of information. Applications may subscribe to higher identifiers and be 
automatically subscribed (by the transport or network) to the underlying collection of identifiers 
over which the information is transmitted. We may require the capability to express a certain 
range within a larger set of information, such as a range of sensor events. The overall concept 
is very similar to the use of hierarchical topics within a topic-based pub/sub middleware. 

Subscription Aggregation  
Some subscriber(s) may be interested in sets of information. Instead of maintaining multiple 
identifier subscriptions, the transport or network may produce a new identifier that represents 
this collection. If such operations are performed by the application or transport function, the 
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subordinate identifiers are effectively tunnelled over the network. However, it is also possible 
that only the subscriber network participates in the process. In this case, we would require an 
ability to determine whether an identifier is contained within the subscriber interest set. 

Forwarding State Aggregation  
Similar to subscription aggregation, algorithmic identifiers may also perform a role in the 
forwarding function. Sets of FIds composing a more substantial path may be aggregated into 
a single algId. Such aggregate forwarding paths may be used in the network forwarding state 
or in soft-state headers. The use of Bloom filters to specify a forwarding path (see Section 
4.6.1) can be considered as an algorithmic forwarding identifier. 

Caching  
To perform effective caching we must identify useful chunks of information. For example, it is 
probably of little use to collect a few frames of video without the associated meta-information, 
or at least it may be more useful to retain complete frames than frame deltas in the case a 
cache needs to perform selective dropping. The cache therefore needs to be able to identify a 
complete useful set of information to be cached. This could be achieved if such a set were 
identified by an identifier and the cache was aware of how many related identifiers were 
children of such a set identifier. For example, an instruction could be sent along with an item 
of information that the identifiers of related ‘siblings’ in the useful set are generated using a 
sequence number 1..N, a function f, and a set identifier S.  

Coding  
It is possible that the same information can be sent over the network using different 
encodings. Such encodings may be lossless, preserving the original information, or may 
transform the information (e.g. compaction to different video bitrates). Such encodings may be 
identified automatically by generating algIds. An application, that wishes to adapt its bitrate, 
would therefore be able to automatically generate the algId of the required encoding and 
subscribe to this new information feed. Alternatively, mobility to a different device with a 
different screen size or audio capabilities might also result in subscription to different 
encodings. This approach would also work for layered video, where each layer would be 
identified with an algId produced from the original information identifier. 

Return Path  
Many applications may wish to operate in a client-server type of mode. The server would 
subscribe to a rendezvous identifier to receive requests for information. To return the 
response, the client also needs to subscribe to an identifier. The identifier used for this return 
path may be automatically generated as an algId. Thus, a request-reply transport layer might 
automatically subscribe to the reply algId before sending the request on the original identifier. 

Flow Control  
In the discussion on coding, we have already touched on how an application (or transport) 
might adapt its receiving rate by subscribing to different compactions of the information with 
corresponding algIds. However, algIds could also be used to perform flow control requests 
without alteration of the information. A simple example is that the information could be sent at 
different rates using different algIds. Alternatively, an algId could be used for signalling 
information to control the sender rate (like TCP). Any application wishing to adapt the rate for 
a particular rendezvous identifier would send requests to the algId automatically created for 
such a purpose. 
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Content Fragmentation  
Fragments of content (such as BitTorrent pieces) may be sent by using algIds. Any application 
wishing to receive a complete item of information can generate and subscribe to the identifiers 
for each fragment. Such fragmentation can also be structured semantically – e.g. voice, video, 
biography, trailer etc. components of a movie. 

Sequence Numbering  
Any application wishing to produce a sequence of information items may use algIds for each 
item in the sequence produced from a sequence identifier. For example, the temperature 
reading from a sensor may be identified by a single identifier. Each separate reading is then 
allocated an automatically generated algId. Any application wishing to follow the sequence 
must adapt its subscription ready to receive the next item in the series. This allows previous 
items to be repeated without burdening applications that have already received them. 

Error Control  
Similarly to flow control, an algId can be automatically generated for any application that 
wishes to receive network delivery errors associated with another information identifier. 

Reliability  
Using an algId for error notification as described above can allow a sending application to 
receive delivery errors and retransmit information. Alternatively, a reliability feedback channel 
can be automatically generated, similar to the flow control signalling channel discussed 
earlier. Any application that detects lost information can request that the information is resent 
using this channel. Separate algIds may also be generated to transmit logs of the information 
that is being sent over other identifiers so that applications can detect missing deliveries. 

Announcements  
Prior to sending information, announcements may be sent over corresponding algIds. These 
announcement channels may carry announcements for a variety of other identifiers. Thus, an 
application can subscribe to few announcement algIds, which cover their broad information 
interests. When an announcement is received they can then join the correct rendezvous 
identifier to receive the information, reducing the average subscription state in the network 
and allowing receivers to pick and choose which information they receive over a rendezvous 
identifier. 

Designing for algIds  
We can express the general design of algorithmic identifiers as a Directed Acyclic Graph 
(DAG). Identifiers are related to each other through a function that forms the edges of the 
graph. A graph can use different functions provided that an identifier does not have an 
incoming edge for multiple separate functions. Multiple incoming edges into a single identifier 
node mean that the identifier was created using a composite function over all of the parent 
identifiers. It is clear that the functions used within the graph can be used to automatically 
create the graph of identifiers from an initial identifier set. It is, of course, also possible to test 
relationships within a graph.  

Although graphs are only normally partially ordered, by applying an ordering to the functions 
used in the graph it is possible to fully order the identifiers. For example the same function 
may be used to produce a set of children using a branch sequence number as part of the 
function. The DAG representation allows (sub)graphs to be constructed that represent 
sequences and sets of information.  

Some specialised structures that may be created include: 
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• Trees produced through the application of n (potentially infinite) one-way functions 
from an initial identifier. Sequences can be expressed as the recursive application of a 
singular function, or as the children of a single identifier ordered by the function 
ordering. Since no identifier has multiple parents a reversible function can allow the 
tree to be navigated in both directions, providing function information is maintained 
alongside the child identifier.  

 
Figure 4.1 – 2-way tree 

• Reverse trees created from the application of a composite function over a number of 
initial identifiers. Since information is lost in the aggregation of multiple parent 
identifiers, no reverse function exists. 

 
Figure 4.2 – Reverse tree 

• Sequences created from the recursive application of a one-way function. The use of a 
reverse function can allow the generation and navigation of identifiers in both 
directions. This structure can be considered as a specialised case of the tree.  

The ultimate question remains which capabilities the network should support, and thereby 
which functions (for the production and testing of AlgIDs) should be implemented by different 
architecture components. Although different network components could use their own 
specialised AlgID functions, we have shown that it is feasible to consider schemes where the 
identifiers can be produced and tested by multiple components sharing a common scheme (or 
schemes). 
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An alternative to AlgIDs: Relationship Codes  
Although we have discussed that an AlgId is algorithmically generated from one or more other 
identifiers (such as RIds), an alternative approach exists where the identifiers themselves are 
not related. Instead we can take an approach of attaching relationship codes (for example 
within the packet header). Such a relationship code, in its most basic form might be a list of 
parent and child identifiers within the graph. To save space these identifier lists may be 
aggregated within a bloom filter. This approach allows us to test parent-child relationships. 
Although some false positives will result from the use of the bloom filter, the result can be 
tested in both directions reducing the chance of error. Although parent-child relationships may 
be tested by these means, there remain open questions on how to test ordering or sibling 
relationships (without the parent). The use of Bloom filters would not allow the generation of 
related identifiers, but only the testing of identifiers (and relationship codes) that we already 
hold. In this respect, it is similar to the reverse tree method described above.  

One advantage of this approach is that such relationship identifiers can be applied after the 
RIds or other identifiers have already been chosen and are in use by the application, since the 
identifiers themselves remain unchanged.  

4.2 Node-internal Architecture 
The node architecture constitutes an important element in the overall PSIRP system 
architecture. It serves as a kind of nucleus from which the distributed functions of the 
architecture, e.g., the rendezvous and forwarding system, is built up. For this, the architecture 
applies the main PSIRP concepts, e.g., information items within scopes of information, 
applying the component wheel structure as described in Section 3.4. 

4.2.1 Blackboard Approach  
The node architecture employs a blackboard approach in order to implement the 
communications of components within the component wheel. In addition, the notion of local 
helper functions (see Section 3.5.4) is used to implement the necessary components for the 
node functionality. The local blackboard provides a service that is essentially similar to the 
memory-object service described in Section 3.3.2. 

Forwarding to the network via the Blackboard  
For communicating with the low-level packet service, each node includes a number of local 
output queue scopes, each corresponding to a single FId (determining a destination for the 
memory objects placed in the particular queue). We recognize that there may be some access 
control to these low-level scopes although the exact nature of such access control is for 
further study.  

Whenever a process places a new object in any of these scopes at the node-local blackboard, 
a sender-helper function inspects the newly inserted object. If it fits into one packet, the 
sender helper forms a packet containing the object, adding a packet-level RId by computing a 
hash over the content. After that, the sender-helper sends the packet out with the FId. Other 
header fields beyond the FId and packet-level RId needed are a partially open question; see 
below. At the same time of sending the packet out, it should most probably also be published 
in the local "opportunistic cache" scope. 

Receiving from the network via the Blackboard  
At the receiving end, there are input queue scopes, each corresponding to a FId. Whenever a 
node-local network-receiver gets a packet, it places it in the "input queue" scope 
corresponding to the FId, publishing it locally using the packet-level RId that is included in the 
packet. Additionally, the packet is cached in a local "opportunistic cache" scope, subject to 
caching policy.  
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This simple design forms the obvious difficulty of correlating any related packet at the 
receiving end, as many higher-level publications (memory objects / streams/whatever) can 
share a single FId. Solving that seems to require a next "layer", with corresponding helper 
applications, effectively implementing particular service APIs above the memory object API.  

4.2.2 Segmenting Memory Objects  
To handle larger than packet-sizes objects, we introduce further helper applications and low-
level scopes. These are called packetiser-helpers as well as output and input places (as 
opposed to "queue" scopes, used for the actual sending and receiving.)  

At each node, there is a number of local output place scopes. Whenever any process places a 
new object or updates an existing object in any of these, the packetiser-helper inspects the 
object. If it is a new object, the packetiser-helper chunks it into packets and places each of the 
packets separately at the right output queue scope. It is important to note that this causes no 
data copying, as the packetiser-helper simply maps its input object into its memory, and 
publishes each of the pages separately, merely causing a "directory entry" to appear in the 
"output queue" scope. If it is an updated object, the packetiser-helper determines which pages 
have changed, and places only those to the output queue.  

At the receiving end, the depacketiser-helper needs to be able to reconstruct the larger and/or 
updated object. For that, it needs information from the packetiser-helper at the sender end. 
For this, the packetiser-helper constructs a meta-data object, containing the packet-RIds of 
the individual packets, and publishes it in the same output queue scope, causing it to be sent 
to the receiver, making it visible to the depacketiser. With this, the packetiser can pick the right 
packets from the "input queue" scope, re-arrange them in a continuous memory area (this 
may need a new system call), and eventually republish it in the "input place" scope.  

Similarly, if there is an update to an object, the packetiser will update the meta-data object, 
republish it, eventually triggering the depacketiser to get the new version, allowing it to 
construct the new version of the object, and republish it. This meta-data object is also needed 
for the next layer, e.g., for minimal error correction, although this is out of scope for this 
discussion.  

Given this design, it would be sufficient for all of the packets to contain just the FId and 
packet-RId. The metadata packet would contain the "object" RId, and any scopes beyond the 
FId-related scoping. The "object" RId would allow the depacketiser to recognise new versions 
over old objects. However, at this time we are not sure yet that these are the right design 
choices, as there are open issues related to resilience and security. Furthermore, an 
investigation of the usage of algorithmic identifiers (see Section 4.1.5) is necessary in the 
context of segmentation.  

In a practical implementation, the packetiser-helpers and network-sender/receiver helpers are 
combined. However, it is useful to realize them as being separate logical entities, as 
discussed above.  

Potential implementation details 
At the node-local level, each publication of a memory-object results in events being queued to 
all processes that have subscribed to the memory-object. A new subscription to an existing 
memory-object results in an immediate event to be queued, allowing the subscribing process 
to receive the currently cached version immediately.  

At the network-level, the service is defined in terms of the lowest-level service, described in 
Section 3.3.1. Each publication of a memory-object results in a number of calls to the packet--
level forwarding service, once for each page. Furthermore, if the memory-object contains 
more than one page, a meta-data summary page will be forwarded.  

In pseudo-code, the service is defined as follows: 
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  create(requested-length) := { 
    metapage, memory-object := allocate(1 page + requested length) 
    metapage.mo_len  := length(memory-object) 
    metapage.version := 0 
    return pair of <metapage, memory-object[metapage.mo_len]> 
  } 
 
  publish(SId, MO-RId, pair of <metapage, memory-object> ) := { 
    metapage.version      += 1 
    metapage.delta-bitmap := changed_pages_as_bitmap(memory-object) 
   
    for each FId active for this publication { 
      for each page in metapage.delta-bitmap 
        metadata = { type=page, MO-RId, version=metapage.version, 
        number=page.number } 
        forward(FId, in-packet-meta-data = metadata, page) 
      if (metapage.mo_len > 1 page) 
        metadata = { type=meta, MO-RId, version=metapage.version, 
        number=#pages } 
        forward(FId, in-packet-meta-data = metadata, metapage) 
      } 
    } 
  } 
 

At the receiver end, the operation of the packet collector helper can be defined in pseudo-
code as follows  

 
  receiver-helper(Fid) => { 
    stream := listen(FId) 
    until stopped do { 
      get next < page-RId, in-packet-meta-data, packet > from stream 
      find metapage for in-packet-meta-data.MO-RId 
   
      if (in-packet-meta-data.type = meta) { 
        if (metapage.version < in-packet-meta-data.version) 
          page.delta-bitmap |= metapage.delta-bitmap  
          metapage := page 
      } 
   
      if (in-packet-meta-data.type = page &&  
          in-packet-meta-data.version = metapage.version)  
        clear the corresponding bit at metapage.delta-bitmap 
   
      if (metapage.delta-bitmap is empty)  
        publish(SId, RId, memory-object) 
    }  
  } 
 
Note that the pseudo-code above specifies only node-local behaviour. In particular, it gives no 
guarantee that an act of publication would trigger any events at any other nodes, other than 
the local node. The details of how such memory objects are exchanged between nodes, and 
therefore on the network service semantics, depends on the upper level services.  
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4.3 Helper Functions 
We define helper functions to cover the spectrum of various components and software entities 
that are neither responsible for the core network service, nor can be considered as traditional 
applications either. Instead they provide additional network (or associated) capabilities.   

As such, all helper functions must be capable of operating using the basic network API and 
publish/subscribe paradigm. Helper functions fall into several categories, depending upon 
their positioning in the architecture: 

• Network management functions: These functions provide information about, and 
control of, the various network elements from forwarding nodes to rendezvous points.  

• Remote service functions: These functions are not truly in the network, since they 
are, by definition, not required for basic network communication. Examples of such 
service functions are encoding or caching where the end host applications wish to 
make use of local supporting services located at suitable points throughout the 
network.  

• Host service functions: These functions are network support functions operating on 
the same hosts as the application. Under this definition network transport functions or 
other network middleware can be considered as helper functions along with traditional 
utilities such as ping or traceroute. Some of these functions may require capabilities 
from the network, such as marking or they may use network management functions to 
obtain network information.  

4.3.1 Network Management Functions 
Important use cases of helper functions are network management and network information 
gathering, since incomplete or inaccurate understanding of the network hinders planning and 
management and might accordingly lead to suboptimal performance. Management functions 
vary widely in nature, ranging from gathering of information about present network resources, 
to their allocation and configuration, performing upgrades, and dynamical adaptation and 
optimization of network parameters for maximum performance.  

There are various ways of collecting required data. In the current Internet the most prevalent 
is the manager/agent model used in SNMP (Simple Network Management Protocol) where the 
role of the manager is to provide interface between human and network management system 
while the agent provides connection between management system and physical device being 
monitored. SNMP uses small set of messages for information exchange (GET, GET-NEXT, 
SET, GET-RESPONSE and TRAP). The managed system generates a TRAP message as an 
asynchronous notification of an occurred event. In addition to SNMP, additional protocols 
(such as ICMP) are in use to obtain connectivity information roughly along paths between 
endpoints, although the granularity of the information obtained is severely hindered by modern 
traffic engineering practices and limitations in the underlying protocols.  

We believe that addressing network management as an integral part of the architecture effort 
is warranted, and are thus at present actively exploring the related solution space as part of 
the architecture work. Many of the problems in existing network architectures are caused by 
having management functions built in as afterthoughts, and not being really integrated into the 
original design.  

The pub/sub networking, in the form of the PSIRP service model, provides for a much more 
natural basis for network management applications than traditional endpoint-centric 
mechanisms. An architecture for gathering network information, which closely resembles the 
publish/subscribe paradigm, is the Unified Link Layer API (ULLA) [Soo2008] developed as 
part of the GOLLUM project. ULLA introduces an interface for collecting link layer information 
using flexible query and notification mechanism. Link aware applications express their 
interests by specifying various link conditions in the form of a lightweight subset of SQL. Each 
SQL query contains different link attributes as well as thresholds for notifications, of which 
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applications want to be informed. The notification mechanism supports both event-driven and 
periodic reports. The ULLA work can be used as a basis for some of the network management 
related PSIRP helper functions in the sense that (helper) applications interested in specific 
network conditions “subscribe” to them by making a lightweight SQL query, defining these 
network parameters and thresholds of which they want to be notified. This subscription can be 
mapped in the usual way to a unique RId, using an algorithmic mechanism for generating IDs. 
Algorithmic IDs can also be used to provide access to the synchronous query mechanism of 
ULLA, essentially by mapping the relevant information structures to the blackboard of the 
node, and standardizing the way these are assigned identifiers based on the structure of the 
underlying physical network. For queries, once the specified conditions are fulfilled, 
notification is sent back to the application. In this way, the application is informed only about 
the events of interest, saving time, traffic and processing resources compared to the simple 
case of notifying about all possible values related to the network attribute of interest.  

4.3.2 Remote Service Functions 

Segmentation 
A possible application of helper functions is in the case of transferring large amount of data 
over the network. Due to the different conditions and properties of links over the path, various 
data segmentation patterns could be applied. In this case, assuming that the forwarding path 
from publisher to subscriber is known, an essential piece of information needed for efficient 
transmission is the MTU size over the entire path. Following the approach above, the MTU 
helper function would subscribe to the MTU size information. This information can be used as 
one of the inputs for the segmentation helper function, which can command final segmentation 
of data. The segmentation helper function can subscribe to data that has to be transmitted 
and based on the information it gets from the MTU helper function, it publishes data in the 
form of segmented parts. 

Similar functionality can be provided at the subscriber side, as well as intermediate nodes 
where the merge helper function can perform merging of data if needed. The merging helper 
function subscribes to data, that has to be received or forwarded, and based on information 
received from MTU helper function, it publishes the merged data.  

We can also consider another monolithic approach to the segmentation helper function 
implementation. To avoid the helper function partitioning into a large number of separated 
components, all data needed for the segmentation decision could be collected by the 
segmentation function itself, without introducing additional helper modules. Here, we would 
face the trade-off between complexity of this solution and its compactness and independence. 
On the other hand, breaking the helper functionality into small modules adds flexibility and 
reusability to the system. 

FEC/Content protection 
Another potentially important role of helper functions is in error control of data transmission. In 
order to be able to recover partially corrupt messages at the receiver side without 
retransmissions, the sender can add redundant data to its message (error correction code). 
Upon receiving a message containing redundant data, the receiver is able to discover possible 
errors and to correct them. In this way, a back channel is not needed, and the probability of 
correct data transport without retransmissions is higher.  

Many coding techniques have been developed for transforming messages in a form that 
improves the probability of reception and correct decoding, starting from more traditional Reed 
Solomon block code (N,K) which adds N-K symbol redundancy so that after receiving any K 
symbols out of N sent, the receiver is able to decode to rate-less codes which do not introduce 
a limitation of the number of encoded packets generated and apply various algorithms over 
different sets of message bits.  
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However, the static determination of FEC mechanisms to be used as well as its code size and 
other properties may degrade its performance due to inaccuracy in the estimation of the 
underlying channel state, and possible variations of environment characteristics, e.g., changes 
in BER over time may lead to inefficient bandwidth usage due to fixed FEC schemes applied. 
In this sense, a FEC helper function might yield the ideal way to bypass this problem by 
collecting data necessary for decision on the appropriate FEC mechanism to be used in the 
same way as in the segmentation helper function. A FEC helper function can subscribe to 
data on which FEC coding has to be applied, and based on the current environment 
information it gets, it applies a FEC scheme with the most appropriate parameters. Such an 
operation might be especially appropriate near wireless edges of the network to provide 
additional protection over lossy segments only.  

Content re-encoding 
As an example of a remote service function we shall examine how content encoding can be 
supported by the PSIRP network and provided by a service provider. In this example a host 
wishes to send multicast video to a number of subscribers. However, some of these 
subscribers require the video to be encoded at a lower bit-rate and resolution.  

The application could choose to send both pre-encoded streams, but to improve network 
utilisation it decides to send only the higher rate stream and employ remote services to 
perform the transformation to the lower rate encoding.  

The main problem is the selection of an encoding service at a suitable network location and 
the dynamic management of such service selections as the current subscriber base changes. 
One model of how this can be achieved is for the encoding service to subscribe to an identifier 
that represents the particular service in that location. Although geographic location can be 
obtained by the service using its host information (either through a GPS device or manually 
configured location), this will only provide an approximation of network locality (and perhaps a 
poor one if we consider today’s interspersed mobility networks). Instead we require that the 
network attachment process provides a network location (such as the forwarding network 
identity) to the host. To improve the selection of location dependent services the network 
attachment could also provide the identities of neighbouring networks.  

Using the network location/identification information the encoding service in our example 
would subscribe to an identifier that represents “requests for encoding services in network X”, 
along with perhaps a further subscription to “requests for encoding services adjacent to 
network Y”.  

The video streaming server will start by selecting identifiers for the various items of video it 
has available. It will then produce an associated identifier on which to receive requests for this 
item, and subscribe to these identifiers. These identifiers will be announced to potential clients 
through a range of announcement channels, directory and search services, which we will not 
discuss in detail in this section.  

A potential video subscriber will identify which items of video it is interested in receiving and 
hence select the identifier on which to send its request. Within the request the client will 
include the network information obtained from the network attachment process, along with 
details about the desired encoding.  

The video server receives the client request and in turn sends a request for video encoding 
services in the network (proximity) of the client. It now has the option of directing the client to 
one of the available encoding services, or providing a direct stream from the video server. In 
our scenario the server decides to utilise one of the available encoding services close to the 
subscriber to convert an existing higher rate stream from previous clients. To do so, it instructs 
the encoding service to subscribe to the existing stream, and create a new identifier for the 
video content on the lower bitrate. This identifier is returned by the service to the video server, 
which in turn passes it onto the client.  
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The client may now subscribe to the identifier representing the re-encoded content from the 
local encoding service.  

Application-specific caches 
Specific caches can offer interfaces that match those of the original content providing 
application. For example they may offer the same search facilities, or the same flow control 
protocol.  

The use of a local cache must be considered in two parts. Firstly the content must be 
delivered to the cache through the actions of an initial client obtaining some content. Secondly 
a subsequent client must be able to obtain the content from the cache instead of the original 
content provider. In both phases the application must be able to identify cache services near 
the client in the network, since the reason for using a cache is to obtain content locally (for 
reasons of performance or cost).  

Similarly to the local content re-encoding scenario described above, each cache service can 
subscribe to identifiers related to the service they offer within, or in proximity to, forwarding 
networks. These identifiers can then be used by either the content server or the client to 
instruct the cache to participate in the content delivery.  

The process starts with the client discovering which identifiers to use to obtain the content. 
Such identifiers may relate to the content provided by a single server, or may be used by 
multiple servers to subscribe to receive content requests. In the latter case, a decision may be 
made by the client as to where to obtain the content (perhaps based upon the locality of the 
content provider). Alternatively, such a selection process may be performed by the cache 
upon instruction by the client.  

For applications where the client controls the cache selection, the client will send a request for 
local cache services to the identifier related to such services within its local network. It will 
then get responses from services that are willing to participate and may select the cache 
preferentially (based on response times, price etc.). The client will then communicate to the 
chosen cache the identifier, or identifiers, to use to obtain the content from the content host(s) 
(or previous caches). The content may be multicast simultaneously to both the cache and the 
client.  

In a model where the content server selects the use of the cache, the client will communicate 
with the content server (including information about its network locality). The content server 
will then select the cache service and instruct it to subscribe to receive the content. The 
content will then be multicast to both the cache and the client simultaneously.  

It is also possible to arrange the cache such that the content is delivered through the cache 
instead of multicast simultaneously to both the cache and the client. This model is likely to be 
worse in terms of performance, but may offer economic incentives (such as the cache provider 
being allowed to insert advertisements in return for its services).  

Once the cache has received a copy of the content item, it may then register as a content 
provider for that item.  

4.3.3 Host Service Functions 
Service functions on the host include transport and other application middleware network 
services. For example, the current PSIRP implementation provides a shared blackboard 
metaphor for distributed applications using the network. Other host services provide local tools 
and utilities to help with the usage and management of the network. Traditionally, some of 
these tools have been provided with the host operating system such as ping or traceroute, 
along with diagnostic functions such as tcpdump or wireshark.  

All of these services can utilise the PSIRP network API, and potentially also utilise other 
remote services (such as network management services). They may provide a programming 
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interface (API) to the applications using legacy application integration technology (such as 
JMS or a Windows API), or may alternatively utilise the PSIRP network. In this latter approach 
the local host implementation of the PSIRP architecture can provide a publish/subscribe 
network internally to the host for component and application integration, directly replacing 
technologies such as JMS or CORBA Notification Services.  

As an example we can consider a transport component that provides a particular rate control 
and reliability algorithm for point-to-point delivery (similar to TCP). This transport component 
subscribes to one or more identifiers over which it receives information management requests 
from a number of local applications. The component would be instructed by an application to 
subscribe to certain information (from the local application) and make those information items 
available on a different set of identifiers. This second set of identifiers will be the ones shared 
by the application to potential remote subscribers.  

4.4 Rendezvous 
The main purpose of the rendezvous functionality in the PSIRP architecture is to provide 
pub/sub signalling reachability from publishers and subscribers to data or service specific 
rendezvous points.  

The main requirements for this functionality are:  

1. Scalability to Internet-like networks and data space sizes,  

2. efficiency of operation, measured in signalling overhead and overall latency, and  

3. deployability. 

The first two requirements are usually considered for internetworking designs, but in many 
cases the third requirement, deployability, is often not explicitly addressed. The main 
considerations for deployability are incremental deployment and stakeholder incentives. The 
incremental deployment as a target has a direct impact on the architecture, as the architecture 
needs to be composed of modules, or parts that are individually deployable, and also 
networkable. Stakeholder incentive considerations tell us that parties (e.g., operators) will 
invest in (rendezvous) functionality only if it is in their economical interest to do so, and that 
the scope of their investment is likely limited by their ability to collect revenue based on the 
publish/subscribe traffic. This guides the architecture to avoid assumptions on globally 
centralized solutions, when it is not foreseeable that such solutions are economically feasible.  

4.4.1 Rendezvous Networks 
Rendezvous networks are units of deployment for the PSIRP rendezvous functionality. The 
rendezvous networks are formed by rendezvous nodes (RNs), organized as a BGP-like inter-
domain hierarchy (Figure 3.10). In some cases big, geographically dispersed autonomous 
systems (ASes) may benefit from splitting their network to multiple such rendezvous networks, 
but in the typical case the rendezvous network would be a collection of rendezvous nodes 
from multiple cooperating ASes.  

Likewise, smaller ASes may find it sufficient to operate one rendezvous node, but bigger 
domains will need to operate multiple rendezvous nodes in their rendezvous networks.  

Rendezvous points (RPs) are logical meeting places of the pub/sub system. There is one 
(potentially distributed) RP for each <scope identifier, rendezvous identifier> pair. However, 
typically most of the RP-functionality can be shared between publications in the same scope. 
This is the mechanism by which e.g. scope level access policies can be shared by all 
rendezvous identifiers within the scope. RPs are hosted by (one or more) rendezvous nodes.  

The interaction model within the rendezvous networks is BGP-like in the sense that 
rendezvous nodes operating over inter-domain boundaries explicitly adhere to the inter-
domain traffic policies of the ASes. This translates to the valley-free routing policy [Gao2001]: 
publish messages are sent to all peers and to all provider and sibling ASes, and then 
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recursively to their peers, and providers and siblings. Peers do not forward the publish 
messages further. This enables the corresponding subscribe messages to utilize the default 
route up the provider hierarchy. This process will result in the corresponding publish-related 
state to be found at the latest on the rendezvous network root level (Figure 3.10).  

The valley-free routing policy leads to optimal policy-compliant paths for the signalling 
messages within the rendezvous networks. This helps keeping the rendezvous overhead at a 
minimum level. However, the participating domains may have incentives for other types of 
policies as well [Raj2008]. Our architecture places no limit on utilizing such non-valley-free 
policies.  

Another rationale for the policy-based rendezvous network structure is the fact that non-
operator ASes may offload most of the rendezvous signalling related state management to 
operators who are in the business of providing inter-domain networking services. This can be 
seen by considering stub-ASes (autonomous systems with no transit customers): They are 
only required to maintain state related to advertised publications received from their direct 
peers in the rendezvous network, and this only if they in fact agree to peer also at the 
rendezvous level.  

The bigger the rendezvous network, the more signalling and state management overhead is 
placed on the root-level rendezvous nodes. This places a natural scaling limit to rendezvous 
networks. In practice it may be that transit ASes will instruct their biggest non-stub customers 
to form rendezvous networks by themselves, and providing themselves rendezvous service 
only to their direct stub-AS and smaller non-stub customers.  

This structure of rendezvous networks begs the question of how they are connected together 
to provide global signalling reachability over the whole PSIRP network? This is the topic of the 
next section. 

4.4.2 Rendezvous Network Interconnection 
Given the description of rendezvous networks above, the next challenge is the interconnection 
of such networks to form a globally reachable rendezvous solution. There are multiple 
potential solutions to this problem. It seems that none of them can be prescribed, as the 
intricate preferences of the network stakeholders are not known in advance and also develop 
over time.  

The most obvious alternative is that a central entity in the whole global network takes the 
responsibility of managing rendezvous signalling reachability between all rendezvous 
networks. However, this option is riddled with challenges relating to e.g. trust, incentives, 
competition, etc.  

Some of these challenges could be addressed by competition of multiple such entities. The 
providers would compete in global rendezvous reachability coverage and thus would invite all 
the rendezvous networks to deliver their reachability state to them. Additionally, such 
competing rendezvous providers could then proceed to exchange rendezvous state between 
themselves, in practice shifting the interconnection problem up one level. Proactive state 
exchange between such providers is one possibility, but that again leads to an explosion of 
the state management overhead.  

Finally we observe a possibility for a fully distributed mechanism for rendezvous network 
interconnection. The participating rendezvous networks self-organize to interconnect without 
any third party rendezvous infrastructure.  

The participating rendezvous networks in such virtual interconnection overlays need to share 
a degree of mutual trust. The level of this trust needs to be the highest amongst the networks 
interconnecting directly, and may be lower between entities further away from each other. This 
gives a rise to a virtual hierarchy-like structure, where rendezvous networks join into virtual 
subdomains, which in turn are joined in higher-level subdomains. In the end all participating 
rendezvous networks are part of the same, overall virtual interconnection structure.  
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As global mutual trust is out of the question, multiple such interconnection overlays will be 
necessary in practice. While the virtual structures can fully operate without 3rd party 
rendezvous infrastructure, it may be beneficial to incorporate the virtual hierarchies into legal 
entities for contractual reasons. This would decrease the number of needed contracts from the 
maximum peer-wise number of O(N2) to something closer to linear, as each participant would 
need to contract only with the interconnection-related legal entity.  

Our basic design criteria for the virtual interconnection structure is to enable efficient on-
demand distribution of rendezvous state. This would leave most of the existing scope-related 
reachability state local to their rendezvous networks, as only a small fraction of all scopes are 
expected to gain global popularity. We also aim to utilize the expected power-law scope 
popularity distribution to efficiently utilize caching to keep the average rendezvous routing 
latency low [Ram2004].  

One possible structure for providing the above is the Canonical Chord [Gan2004]. The overlay 
structure is virtual and all the interaction happens between the root-level rendezvous nodes of 
the rendezvous networks. The Canon hierarchy provides two important properties for 
efficiency.  

The first of these is locality, making the communication within a subdomain stay within that 
subdomain, not leaking out to the rendezvous networks outside that subdomain. This property 
hinges on domain-wise interconnection of the Chord rings maintained at the rendezvous 
network root nodes, and per subdomain-level registration of the scope reachability state. This 
distribution of the reachability state also provides robustness against node failures.  

The second feature is that at each subdomain level, there is a given exit node to the next level 
for each scope identifier. This makes caching the scope identifier reachability state very 
efficient, as the other nodes in transit need not cache the returned scope reachability state.  

The Canon structure requires the participants to share a common view of the virtual hierarchy. 
This hierarchy could be informed by the underlying inter-AS topology, which reduces the 
signalling stretch, but can also be orthogonal to it. This latter option makes it possible to form 
the structure based on degrees of mutual trust or business interests, regardless of the 
underlying physical connectivity.  

It should be noted that this interconnection structure is only used for the rendezvous 
signalling, and that the actual data being transmitted can still follow optimal policy-compliant 
forwarding paths, even when the signalling paths may be longer in order to achieve the 
required Internet-wide scalability.  

It is also possible to mix and match these interconnection strategies. While participating in 
various interconnection overlays, the rendezvous networks may also elect to practice pair-
wise peering with some of the other rendezvous networks. This may happen using the 
interconnection overlays (in form of additional fingers), or directly between the rendezvous 
networks. In such cases the participants may also agree on (local) popularity based proactive 
distribution of the most scopes, while the interconnection overlays will function as the "default 
route" to locate the rest of the scopes. 

4.4.3 Rendezvous Example 
In this section we give an overview of one possible way of implementing the PSIRP inter-
domain rendezvous system. As the detailed design of the inter-domain rendezvous is still in 
progress this implementation overview contains several open issues, which are noted in the 
text below. Also, while typically there are multiple implementation strategies for each function, 
we present only one such strategy here.  

Figure 4.3 represents an example inter-domain rendezvous system containing three 
rendezvous networks; A, B and C (dashed ellipses), which are interconnected through an 
interconnection overlay (the solid ellipse). In the system we have two types of physical 
entities, namely rendezvous nodes (RN) and end-nodes (N), and three types of logical 
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entities: rendezvous point (RP), subscriber (Sub) and publisher (Pub). This example 
rendezvous configuration is used as the reference topology in the examples below where we 
go through the basic rendezvous operations in simple usage scenarios. This configuration is 
simplified for the ease of exposition and illustrates only the critical entities from the 
rendezvous viewpoint. In real scenarios both the rendezvous networks and the 
interconnection overlays would be more complex.  

 
Figure 4.3 – Reference rendezvous topology 

The overall rendezvous functionality can be divided into three aspects: 

1. Node internal rendezvous,  

2. rendezvous within a rendezvous network and  

3. rendezvous between rendezvous networks.  

In the example operations we consider the two latter parts, skipping the node internal aspects.  

Rendezvous System Bootstrap  
Before the rendezvous system can operate it must bootstrap. Figure 4.4 illustrates a simplified 
rendezvous bootstrap message sequence chart. From the figure we can distinguish three 
separate bootstrap operations taking place independently: 

1. Rendezvous network bootstrap (1a), where end-nodes within the domain are made 
aware of at least one rendezvous node (RN), serving as the end-node’s proxy to the 
rest of the rendezvous system. If an end-node has no knowledge of any rendezvous 
nodes, it can assume to operate only within the context of its immediate physical links 
(link-local operation). As part of the rendezvous network bootstrap the end-node 
becomes aware of the specific scope identifier (SId) with which it can reach the 
rendezvous node. If the local domain has several rendezvous nodes, each of them 
may have their own SId reserved for the intra-domain rendezvous use.  

2. Inter-RN bootstrap (1b and 1c), where all rendezvous nodes belonging to a 
rendezvous network will establish topology for the rendezvous network, i.e. each RN 
becomes aware of their neighbouring RNs and their relation to them. The relation can 
be a customer, peer or provider relation, defining the behaviour of the communicating 
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RNs in the different usage scenarios below. For example, in rendezvous network C we 
have a “tube” rendezvous topology where RNC is rendezvous provider for RNC10, 
thus making the RNC10 rendezvous customer of RNC and similarly RNC10 is provider 
for RNC100. An RN that has no rendezvous provider is called a root-RN of its 
rendezvous network.  

3. Inter-rendezvous network bootstrap (1d), where the interconnection overlay between 
the rendezvous networks gets established. Inter-rendezvous network bootstrap 
functionality is still work-in-progress and is not handled in detail here.  

 

 
Figure 4.4 – Bootstraping the rendezvous system 

Publish  
The example of a publish operation in Figure 4.5 begins when an application in a node that is 
currently located and attached to the rendezvous network C wishes to publish some data 
outside the node. Due to the successful rendezvous network bootstrap phase the node is 
aware of an active rendezvous point (RNC100), reachable through one of its network 
interfaces. Each end-node in the PSIRP system contains the so-called rendezvous helper 
function which initiates the rendezvous signalling for the publish operation. 

 

 
Figure 4.5 – Example of a publish operation 

Each rendezvous signal consists of outer and inner headers and a payload. The outer header 
can be seen as a transport header within the rendezvous system and it may change in each 
hop. The inner header and the payload contain the identifiers, metadata and possible data 
relating to the actual rendezvous signal and the publication in question. The work on 
rendezvous signal formats is still in progress and we will not dig deeper into that issue here. In 
the messaging charts we have also left out the possible acknowledgement messages.  

When the publish signal (1) arrives to RNC100, the receiving node first verifies the header 
information to confirm that the signal is valid. Assuming that the signal passes the validation 
tests, as a next step the RN must figure out what it should do with the signal. Let us assume 
that the SId in the inner header is unknown to the RNC100 – unknown in the sense that the 
RN’s data structures have no reference to the SId among its active rendezvous points (RP) or 
in the scope cache. In such a case the RN needs to determine whether it should create a new 
rendezvous point for the scope in question or just forward the message further. To help with 
the decision, each RN should manage a list of rendezvous contract identifiers, indicating for 
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which requests it is willing to create new rendezvous points. Obviously, the rendezvous signal 
should contain a matching identifier, for example in the metadata. Before the RN willing to 
register the publication state is reached, the message is forwarded up in the rendezvous 
provider hierarchy. In our example case, RNC100 forwards the signal (2) to its provider 
RNC10 – either there was no match in the contract list or RNC100 is not configured to create 
rendezvous points at all (caching only rendezvous node).  

When receiving the signal, RNC10 runs the same algorithm as RNC100 above did, only this 
time the outer header consists of the (SId, RId) pair that RNC100 and RNC10 have agreed to 
use in their communication. RNC10 finds a match for the contract identifier from its list and 
therefore becomes an authoritative RP for the scope. Details of the RP initiation in the RN are 
skipped here. Once the RP is up and running and the metadata and related publisher 
forwarding information stored to the RP data structures, the newly added scope must be 
advertised within the rendezvous system. To achieve this, RNC10 will advertise the scope to 
all its rendezvous providers and peers. The RNs that receive this advertisement will add an 
un-authoritative scope entry to their scope cache data structures. The entry contains 
information that enables the forwarding rendezvous signal towards the advertiser when 
needed. In addition, if the advertisement is received from the rendezvous customer, the 
receiving RN will forward the advertisement to all its providers and peers. The same logic is 
followed recursively until the advertisement reaches the root-RN(s) of the rendezvous 
network. Advertisements received from a peering rendezvous node are not re-advertised, so 
that the resulting rendezvous signalling paths remain policy-compliant.  

Once the advertisement reaches the RNC the scope and the publication (Rid) become 
reachable within the rendezvous network. The root-RN then initiates a response message 
back to the initiating node, informing it of the fate of the message, i.e. whether the publish was 
successful or not. This message is not depicted in the figure.  

Finally, the root-RN, RNC will register the new scope with the interconnection overlay. At the 
moment we assume a Canon hierarchy [Gan2004] will be used for this, as described in 
Section 4.4.2 above. 

Subscribe  
Figure 4.6 illustrates a message sequence chart for the subscribe operation. The subscriber in 
the example is attached to the rendezvous network B (see Figure 4.3). As in the publish case, 
the subscribe operation begins when some application in the node wishes to access the 
publication content identified by a (SId, RId) pair. Because the requested data is not locally 
available, the node’s local rendezvous helper initiates subscribe rendezvous signalling. The 
signal (1) is sent towards RNB100, of which the node is aware as a result of the successful 
rendezvous network bootstrap. Again, as in the publish case the RN first verifies the validity of 
the signal and only after that figures out what to do with it. The subscribe operation in the RN 
is in general very close to that of the publish operation - the subscribe signal can also lead to 
the establishment of a rendezvous point in RN, if the SId is unknown to RN and the signal 
carries a contract identifier that matches with the contract list within the RN. The reader should 
notice that in reality handling and managing of contract identifiers and creation of RPs can 
hardly be as simple as described here. The detailed solution is work-in-progress. 

In practice, when the RN receives a subscribe signal it first checks whether it has active a 
reference for the inner header SId. If the first search fails and also the contract identifier in the 
signal results in no match, it means that the RN does not know of the SId and will not 
establish a RP. Thus it must forward the signal to all of its rendezvous providers and peers. If 
there is a match, the match can be either among active RPs or in the advertised scope cache. 
If the match is in the scope cache the signal will be send towards the RN identified in the 
cache entry. In case the match is in the RPs, the RN looks for a match among the publications 
within the RP using the inner header RId as the search key. 
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Figure 4.6 – Example of a subscribe operation 

If a matching publication cannot be found from the RP, it means one of the following: 

• If the RP is not distributed, the publication does not exist (yet) and the RP may register 
the subscription as a pre-established subscription (if requested by the subscriber) or 
alternatively drop the signal and indicate a failure to the subscriber.  

• If the RP is distributed, the RN should find out if the RId can be located in some of the 
other RNs hosting the distributed RP. The details of the RP distribution are still work-
in-progress.  

Further on, if the SId in the inner header is unknown, but the contract identifier matches, the 
RN becomes an authoritative RP for the SId. In that case the RN registers the subscribe 
signal to the new RP and advertises the scope to its rendezvous providers and peers.  

In our example, RNB100 fails both in the SId and contract search and therefore the signal is 
forwarded (2) towards the next rendezvous provider, RNB10. In RNB10 the same procedure 
and result recur, and the signal is forwarded to RNB. When RNB receives the subscribe signal 
it will repeat the procedure and find no match for the SId or the contract identifier. Because 
RNB is a root-RN, it forwards (4) non-matching rendezvous signals to the interconnection 
overlay, which stores pointers to all active scopes within the rendezvous system. Skipping the 
Canon forwarding details the signal is eventually received at RNC. In RNC the first search 
results hit in the scope cache. The cache entry points towards RNC10 and the signal is 
forwarded (5) towards it. On receiving the signal, RNC10 finds a match for both SId and RId in 
one of its active RPs – the rendezvous has happened. After this, several tasks still need to be 
finished before the publication data can be transmitted between the publisher and the 
subscriber: 

• The subscription is stored to the RP.  

• A forwarding path between the publisher and subscriber must be generated or the 
subscriber should be added to the existing forwarding tree based on the forwarding 
information provided within the rendezvous signals. The main responsibility of this is at 
the topology functionality, but the rendezvous signals need to carry the information that 
enable this to happen. The working assumption is that all publishers and subscribers 
provide their policy compliant network upgraphs to the RP, based on which the 
forwarding paths can be constructed.  

• If the RP holds publication metadata, it is sent (6b) to the subscriber.  

• The RP may also inform (6a) the publisher about the subscriber. 
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4.5 Topology: Management and Formation 
The following section introduces the topology management and formation function, starting 
with the intra-domain management before presenting the inter-domain formation function. 

4.5.1 Intra-domain Topology Management 
The role of the intra-domain topology management is analogous to the functions carried out 
by the interior gateway protocols in today’s Internet. After the inter-domain topology function 
has performed its task, one or more domain level paths have been selected or formed. The 
individual instances of the intra-domain topology management function then operate in the 
individual domains to manage the relevant intra-domain forwarding structures, ensuring that 
publications are delivered correctly both to the subscribers within the domains, as well as 
between ingress and egress points for transit traffic. Similar considerations to the granularity 
of the subscriber information used in these processes hold as for inter-domain topology 
management.  

It should be noted that beyond having to satisfy these rather broad functional requirements, 
the individual domains have a great deal of latitude in terms of the detailed design of their 
topology management functions. At present, for improving our understanding of the issues 
involved (and also for prototyping purposes), the project is outlining in more detail a solution 
reminiscent of the existing link-state routing protocols (such as OSPF), but redone to benefit 
from the native publish/subscribe functionality in the network. However, this is not meant to 
lead to a canonical PSIRP architecture solution for intra-domain topology management, but 
only to serve as a single design example.  

The high level functionality of the system consists of the following steps. For concreteness, we 
call a node interested in receiving information about the physical topology of the network a 
Topology Manager (TM). Each network might have a single TM or a few of them, either all 
participating into the topology management function simultaneously or with anycast 
functionality being used to select the most suitable one for each message; it is even possible 
for all forwarding nodes to be TMs. The use of native publish/subscribe allows the choice 
between these to be transparent to other elements in the network.  

Each forwarding node can now learn its local connectivity by means similar to the ones used 
in network attachment (by publishing and subscribing to local HELLO messages). Local 
connectivity can be represented, for example, as a neighbour list, possibly annotated by link 
quality and forwarding node capability information obtained through appropriate helper 
functions. Nodes then publish this local connectivity information to the TM, which can then 
reconstruct the overall forwarding level topology of the network, and run any appropriate 
algorithms when triggered, for example, by the rendezvous system and / or inter-domain 
topology management. 

Relation to Intra-domain Forwarding with zFilters  
Section 4.6.1 presents a particular solution for intra-domain forwarding with which the 
topology management function needs to collaborate in order to perform its desired forwarding 
function. While we refer to Section 4.6.1 for the specifics of this forwarding solution, we outline 
the relation of the topology management function and the forwarding function.  

In short, the zFilter approach of Section 4.6.1 requires knowledge of individual links (identified 
via so-called link identifiers). The appropriate link identifiers need to be inserted into a Bloom 
filter based packet header (the zFilter), enabling the forwarding nodes within the domain to 
make the appropriate forwarding decisions so that this packet may be delivered via the 
identified links. This insertion of appropriate link identifiers is based on the information on RIds 
and SIds for each publication, which is provided within the process of inter-domain topology 
formation (see Section 4.5.2). This information on RIds and SIds allow for determining the 
(domain-specific) endpoints for delivery between which an appropriate forwarding graph 
needs to be built (based on the link identifiers). The derived path information, encoded as a 
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zFilter, is used by the source node of the delivery graph to send packets to the receivers of 
information.  

However, there are cases (see Section 4.6.1) when it is required that virtual trees are created, 
e.g., for paths that are constantly used. The topology management function is responsible for 
defining these virtual paths that would lead to a more efficient data transmission. This task 
means that the topology manager needs to have methods to evaluate the current traffic 
patterns so as to create more efficient transmission paths as well as methods to decide when 
new virtual paths are needed taking also into account that each virtual tree in the network 
creates additional state at the affected forwarding nodes' forwarding tables. In addition, the 
topology manager also needs to define the lifetime for such paths. Managing such virtual trees 
efficiently in the local network is a complicated task and requires suitable algorithms and 
processing power in the topology layer. While this is not necessary in unicast or sparse 
multicast cases, it is, however, mandatory in the case of dense multicast trees with the 
proposed zFilter forwarding.  

4.5.2 Inter-domain Topology Formation 
The topology layer works in conjunction with the rendezvous and forwarding functions in the 
routing phase of the communication, i.e., it helps building the routing information of the 
forwarding nodes and the forwarding paths according to the policies set by operators and 
users. It also manages edge routers between domains that prevent policy violations and 
protect domain internals. The topology layer stores the policies and network topology 
information that are either hand configured or collected automatically from the network. In this 
section, we explain the problem of inter-domain topology formation, our assumptions and the 
requirements for the solution and technical considerations regarding possible solutions. 

Background 
We assume that a PSIRP network will be divided into autonomous systems, or domains, 
controlled by different, possibly competing, organizations, similarly to today’s Internet. The 
domain level connectivity is largely determined by the relationships between these 
organizations and the needs of their customers, geographical, historical, and political 
considerations, and only indirectly guided by the technology used. The starting point for our 
work has been the current Internet topology but it is expected that the change in the 
underlying network paradigm will affect the evolution of the domain level topology. In the 
current Internet, the relationships between ASes can be roughly divided to customer-provider, 
peer-peer, and sibling-sibling types. Also, there are ~10 so called tier-1 operators that peer 
with each other and do not buy transit from other operators and form a de facto monopoly in 
the core of the Internet. In our work, we start from the assumption that the Internet in the 
future will be operated by a similar mixture of competing, commercial operators seeking profit 
and communities like universities and governments that may have other goals.  

The path taken by packets must reflect the policies between operators and also RId specific 
policies negotiated by the publishers and subscribers of the RId in the rendezvous process. In 
the current Internet, the packets, in principle, typically flow along so-called valley-free paths 
[Gao2001] consisting of 0-n transit provider links upwards, then zero or one peering link, and 
finally 0-m transit customer links downwards. This means that the possible routes a packet 
can take are severely limited, but on the other hand, every domain on the path of a packet has 
clear incentives to route the packet forward in a relatively simple business model where 
customer ASes pay their transit provider ASes to reach certain destinations in the Internet.  

Currently, home users typically buy peak bandwidth to their local ISPs network instead of 
paying based on amount of traffic. Furthermore, policy control on the path of the packet is fully 
left to the operators. This is understandable from a risk management point of view, because 
end users want to limit the total cost and do not want to actively think about it. On the other 
hand, in business access transit is often priced as a function of traffic load. In the Internet, the 
operators on the sender-side of the valley-free route choose the inter-domain path of the 
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packets, taking into account considerations like the length of the AS-level path to the 
destination and the price to use a particular route. It is interesting to note that the path chosen 
from A to B may be different than from B to A and both of these can be suboptimal if we sum 
the costs for both A and B. Based on the current situation, we assume that typical users will 
require predictable costs in the future too. 

Design Requirements 
In the course of the work, we have identified the following list of requirements for the inter-
domain topology forwarding function: 

• The topology layer should allow the operators to flexibly control the routing policies of 
packets going through their domain.  

• It should be possible for customers to define per-RId specific policies; these policies 
being taking into account in the overall topology formation.  

• A PSIRP solution should take into account the costs and policies of both the publishers 
and the subscribers when building forwarding trees (in contrast to the current Internet 
where only sender side control of the routing exists).  

• The topology layer should have enough expressive power to enable complex policies 
and business relationships between ASes, not relying on assumptions such as a fixed 
set of Tier-1 operators and strictly hierarchical AS topology. For example, multi homing 
and partial transit should be easily possible - this partial transit being RId-specific.  

• It should be possible for the operators of domains to keep their intra-domain topology 
hidden and only be required to expose a minimal amount of information towards the 
process of topology formation.  

• The inter-domain topology formation should not unnecessarily limit the implementation 
of intra-domain topologies and their management. There can be multiple different 
implementations inside domains that are compatible with the inter-domain topology 
formation.  

• Incremental deployment on top of the current Internet AS topology should be feasible.  

• The topology layer should automatically and quickly adapt to changes in the network 
topology and efficiently use available routing resources, in accordance with the 
constraining policies.  

• Topology formation should take into account the fact that large domains are linked at 
multiple geographically dispersed PoPs even if they have only a single logical business 
association and by leaking some intra-domain information the routes could be further 
optimized between the domains.  

• The topology formation should take into account potentially different policies between 
the same domains, depending on their point of interconnection. 

Design Benchmark 
A natural starting point for the work is the BGP protocol used in the current Internet. It is a 
policy routing path vector protocol and can be used to express complex policies at the price of 
mediocre scalability. The current implementation also has security problems but they are not 
an inherent failure of the approach. If we assume that each domain on the path of a message 
must somehow benefit from transiting a packet and we allow providers to provide paths to 
different parts of the Internet at different prices, then the path vector is probably flexible 
enough to accommodate any valid policy. Taking this into account, we believe that the valley-
free model of the policy-compliant routes is fully general and stems from the fact that sender 
and receiver (domain or the end point) policies are asymmetric (maybe excluding the peering 
links that could be interpreted as symmetric partial transits). Communicating information about 
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the complete paths instead of just their endpoints is required for policies that prevent certain 
domains on the path. We also use the topology information differently compared to the current 
Internet, which allows us to cater to application and publication specific policies. In addition, 
we investigate the usage of packet level authentication described in [Lag2008] that 
guarantees the authenticity and integrity of the packets, which may enable new policies and 
tools for management of the traffic.  

Conceptual Components 
Given the design goals expressed above, we can outline the following functional component 
architecture for discussing our design considerations. 

 
Figure 4.7 – Conceptual components for inter-domain topology formation 

 

A topology management function is assumed to exist within each autonomous system 
(domain). As previously discussed, we assume that this function implements the local 
topology management and communicates the relevant peering information to the inter-
domain topology formation (ITF) function. The publishers and subscribers come together 
in the rendezvous process within the rendezvous point representing the particular SId in 
which the information items (labelled via an RId) are located. The arrows in Figure 4.1 show 
the relations of these components and are not meant to illustrate the exact message and 
information exchange between them. However, the dashed arrows indicate relations 
stemming from the rendezvous process while the solid arrows show topology formation 
relations.  

Design Considerations 
The following section discusses considerations for the design of the inter-domain topology 
formation process, based on the conceptual architecture outlined in Figure 4.1. We do not 
present a particular solution for this process since this function is still under development.  

Role of the ITF component 

The inter-domain topology formation (ITF) function is clearly differentiated from the forwarding 
function for two major reasons, namely efficiency and modularity.  
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As for the former, it is expected that the required routing policy calculations may not only be 
complex but may also require information about the topology that will require a certain amount 
of storage space. Since the actual forwarding complexity must be low so that it can be 
implemented in hardware for line-speed operation, it seems natural that the ITF function will 
calculate the necessary routing data offline rather than in real-time. The ITF function also 
participates in building the forwarding identifiers (FId) in the rendezvous phase and part of the 
routing information can be embedded in the FIds that are stored in the header of each packet. 
Each router should then be able to make a forwarding decision including security checks 
based only on the routing table and the FId of the packet. In the design of the system, a 
balance between topology related state in packet headers and in routing tables must be 
found. For example, very large headers affect the bandwidth negatively whereas requiring lots 
of memory and processing power in core forwarding nodes makes the system more 
expensive.  

The modularity aspect allows for considering several ITF functions to exist in the system, each 
of which 'primes' the forwarding functions according to a set of policies that reflect very 
particular business constellations. As an example, one ITF could reflect the peering 
information as well as policies that largely reflect the current best-effort Internet. The resulting 
forwarding graphs are largely similar to what could be observed in today's Internet. Another 
ITF, however, could implement forwarding graphs that take into account peering links 
exclusively for particular business relations. For instance, highly resilient peering links for 
financial services could be exposed to this ITF, likely leading to different forwarding graphs 
that will take these additional peering relations into account.  

Inter-domain topology information 

Before publication, the rendezvous system or systems provide the details of current 
subscribers for the SId and RId in question. The granularity of subscriber information 
registered with the rendezvous systems is still being considered within the PSIRP project. The 
broad options considered are:  

• Forwarding network identifier  

• Landmark identifier  

• Forwarding tree identifier  

If a forwarding network identifier is known for each subscriber, then the role of the ITF function 
is to resolve a list of forwarding networks, so as to complete a path tree between the publisher 
forwarding network and those of the subscribers. Each preceding forwarding network will be 
instructed to pass the publication onto the subsequent networks at any available peering 
point.  

In order to improve the construction of an efficient publication tree, especially for large 
networks, we can use a couple of techniques. It is obviously true that a network provider may 
decide to subdivide its network, and so provide a sub-network identifier for their subscribers. A 
similar technique would be to specify a network landmark to which the subscriber is in 
proximity. This landmark may then be used by the preceding network, and indeed the ITF 
function, to determine the best peering points, and the best overall route for the publication.  

An alternative is to construct partial distribution trees within the forwarding networks in 
anticipation of publications. In this case the tree identifier may be shared with the rendezvous 
system and the ITF function. Such tree identifiers would also need to be shared with 
neighbouring networks in order to select the best peering point for connection to the 
established tree. One drawback of this approach is that the rendezvous systems (along with 
inter-domain topology routing and neighbouring forwarding networks) would need to be 
informed when the subscribers within a forwarding network change and new trees are 
established for existing subscribers. This would therefore result in substantially larger volumes 
of signalling traffic in order to establish the requisite routing state.  
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A publish/subscribe approach to inter-domain topology formation 

All of the components fulfilling or interacting within the process of inter-domain topology 
formation can utilise the publish/subscribe capability of the network itself for doing so. With 
this in mind, information about peering routes is seen as being published towards one or more 
ITF components (see the role of this component above), each of these ITF components 
implementing a particular scope of peering information, identified via an SId each.  

In this manner, route changes do not have to be propagated towards one domain at a time, 
but can potentially be notified to all relevant ITF components simultaneously. This may help 
prevent some of the problems found in today’s BGP such as route flapping and problems 
found in ad-hoc networks (e.g. gossip networks) such as knowing when to stop propagating 
notifications.  

In order to be able to use publish/subscribe for the ITF function, it must, of course, be possible 
to ‘bootstrap’ the system. This problem is similar to the network attachment problem for end 
hosts (see Section 4.7), only in this case we attach individual networks to the inter-domain 
routing system.  

Creating a peering market 

Given that we identified the possibility for different ITF components to co-exist and the ability 
to use the pub/sub functionality of the network itself to bootstrap the inter-domain forwarding 
functionality, we can identify similarities to the rendezvous component (see Section 4.4) and 
the market structure that we can see in this space. Hence, the exposure of different sets of 
information to different providers of peering relations is likely to create a (policy-driven) 
peering topology market that is architecturally embedded into PSIRP. 

Control of the formation process 

Within the inter-domain topology formation process, there is significant flexibility as to which 
party initiates the process, which parties participate in the formation decision, and which 
parties simple provide relevant information (such as policies or peering information).  

The choice largely comes down to three factors: 

• Where is it most efficient to perform the role?  

• Where can information (consisting of routing information and policies) be shared 
without compromising confidentiality?  

• Who is trusted to make a policy compliant routing decision?  

We can see that in order to make the routing decision, information is required from a number 
of parties: 

• Publishers (or their local forwarding network or the local rendezvous system for the 
forwarding network) provide the publisher location and publisher routing policies  

• The rendezvous point provides the locations of (and any routing policies for) 
subscribers  

• Each forwarding network (via the topology management function) provides information 
on its peering arrangements and peering policies towards a particular ITF function. 

If the information cannot be shared with a single party, then we must consider multi-party 
negotiation to arrive at a final policy compliant decision. While the rendezvous point may know 
about publisher and subscriber information, it is likely that forwarding networks will not wish to 
share their peering topologies and policies with rendezvous providers. A refinement would be 
for the forwarding networks to share their overall peering topology, but hold their policies 
privately. Each network’s topology management function would then be consulted to establish 
whether the route was policy compliant.  
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A similar alternative is for the each network’s topology management functions to share 
peering information between themselves. Thus, the publisher’s local network would be able to 
establish the best path. In this case each network may still hold their policies privately and be 
consulted during the path formation.  

Achieving fault tolerance and multipath routing 

It is possible that the inter-domain topology formation function could select multiple routes 
from the publisher to the subscribers. Multipath routing can provide advantages for spreading 
network load, providing fault tolerance and for providing security against eavesdropping within 
the network (since secret information is divided between multiple paths). For fault tolerance, 
either the alternative paths may be used in case of failure, or alternatively the traffic may be 
shared across multiple paths, or even replicated in extreme cases where delays in 
retransmission are not acceptable. A downside of multi-path routing is that network 
characteristics between paths may vary widely, and may be unpredictable during heavily 
congested periods. This may cause problems with latency sensitive protocols (such as TCP), 
or where packet ordering should be preserved. A common suggestion, and one that could be 
taken in the PSIRP architecture, is for sensitive application flows to be assigned to single 
paths, but for multiple paths to be used by the overall application or host.  

Although multiple paths can be calculated for the inter-domain topology, there is no guarantee 
that separation will be maintained for routes that share forwarding domains (which at least 
include the publisher and subscriber domain unless multi-homed). Where publishers and 
subscribers are multi-homed the selection of multiple routing paths must be made by the 
application or host, since the network will be unable to correlate the same publisher attached 
to multiple networks. If this is a requirement, then the implication is that the route selections 
are exposed to the host device. For example, when requesting a publication route the 
application may include a policy that excludes the domains used in an already existing path 
calculation. 

Anycast 

It is possible for the ITF function to support different notions of anycast. For example the list of 
subscriber domains obtained from the rendezvous system can be passed to the inter-domain 
topology formation function, which selects a path to only one domain. This decision may be 
based upon a minimum number of domain traversals and knowledge of average hop counts 
between peering points (although the exact path internal to the domain is outside of the 
control of the inter-domain topology function). Other forms of anycast may also be supported 
such as cheapest or least congested (although this data may be stale and may be better 
implemented through the end-to-end testing of multiple paths). Any metrics used in the 
decision must be collected from the forwarding networks and the criteria signalled through the 
publisher routing policy.  

To achieve anycast, the capability within the ITF function must be mirrored within the intra-
domain routing. Since at this point there is no longer an interaction with the publisher (or 
originating network), various anycast functions would need to be signalled through packet 
metadata (headers). This would signal to the end subscriber domain that only the ‘best’ 
subscriber within that domain should received the packet. Since a meaningful flow of 
information is likely to be larger than a single packet, there would also need to be some 
indication (such as a flow ID) that a series of packets were to be sent to the same subscriber.  

4.6 Forwarding 
It is a major assumption for PSIRP that there should not be any reliance on endpoint-based 
end-to-end addressing (as in IP). This directly reflect upon the forwarding structures that need 
to be considered for an architecture that names information items (see Section 2) instead of 
the endpoints publishing and subscribing to these items. It is further assumed that a multicast 
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style packet delivery would occur by virtue of employing a publish/subscribe operation as the 
main communication paradigm.  

Considering the forwarding fabric to be presented in the following subsections, we can 
formulate a few general design requirements. A major one is efficiency as being measured as 
the latency and bandwidth of the communication between subscribers and publishers. 
Efficient routes are likely to be correlated with their goodness in number of AS level hops, 
locality, reliability, and costs to the parties involved. Related to this, any forwarding node 
algorithm should be simple enough to allow a fast hardware implementation at current and 
future line speeds. With this in mind, it seems natural that more complex decisions related to 
routing, policies, security, and topology management should be done in specialized nodes 
(the slow path) in order set up the simpler forwarding nodes that form the basic routing fabric 
(the fast path).  

Another crucial requirement is that FIds should be of temporary nature and be renewed for 
long-term connections. That is, senders are not allowed to send packets to receivers without 
an existing subscription (reflecting this longer-term connection). This protects the network from 
DDoS attacks because circumventing valid forwarding trees is not possible and 
communication along forwarding trees is scalable and access controlled. In addition, the 
forwarding algorithm should also support arbitrarily large (multicast) groups.  

With this temporary nature, it becomes obvious that the FId should not be directly tied to a 
particular RId, meaning that a single FId can be used for transmission of within different RId 
relations. This allows re-using certain transmission trees, identified by the Fid, rather than 
creating new trees for each of the subscriptions. With such a solution, it is expected that the 
amount of necessary state in the network is reduced.  

We further assume that the forwarding will take place in a similar domain-like structure as in 
the current Internet. This reflects the different ownership relations of physical infrastructure 
owners and allows for catering to the local requirements and constraints of these owners. With 
this in mind, we divide the presentation of the forwarding function into solutions for intra-
domain forwarding as well as inter-domain forwarding. The former gives an outlook for a 
potential solution for single domains, based on a source routing style Bloom filter approach. 
The latter addresses design considerations to be taken into account for inter-domain 
solutions.  

4.6.1 Intra-domain 
In this section we present a solution for intra-domain forwarding in a PSIRP network, i.e., a 
network that does not have any end-to-end addresses. The packet forwarding is based on link 
IDs, identifying the links between the forwarding nodes, and on Bloom filter -style FIds in the 
packet header. This presented forwarding fabric is efficient when packet forwarding is 
considered in a single forwarding node, as well as it has a very compact forwarding header in 
each packet. This forwarding fabric can also be implemented in an efficient way on hardware. 

Creating a Forwarding ID 
To forward packets through the network, we use a hybrid approach where the topology 
system both constructs Bloom-filters-based forwarding identifiers, used in a source-routing 
manner, and on demand installs new state at the forwarding nodes. For both of these 
functions, we use an approach where the links, not the nodes, have names. First, we present 
the basic ideas in a somewhat simplified form, and then we introduce ways to handle, e.g., 
loop prevention and error recovery.  

For each point-to-point link, we assign two identifiers, called Link IDs, one in each direction. 
For example, a link between the nodes A and B has two identifiers, A->B and A<-B. In the 
case of a multi-point link, such as a wireless link, we consider each pair of nodes as a 
separate link. With this setup, we do not need any common agreement between the nodes on 
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the link identities - each link identity may be locally assigned, as long as the probability of 
duplicates is low enough.  

Basically, a Link ID is an m-bit long name with just k bits set to one. In the context of this 
document, it is sufficient to note that typically k << m and m is relatively large, making the Link 
IDs statistically unique (e.g., with m=248, k=5, # of Link IDs ~ m!/(m-k)! ~ 9*1011).  

The topology management system (see Section 4.5) creates a graph of the network using 
Link IDs and connectivity information, without any dependency on end-point naming or 
addressing (creating the topology map or routing table). Using the network graph, the topology 
system can determine a forwarding tree for any publication, from the locations of the publisher 
and subscribers.  

When the topology system receives a request to determine a forwarding tree for a certain 
publication, it first creates a conceptual delivery tree for the publication using the network 
graph. Once it has such an internal representation of the tree, it knows which links the packets 
need to pass, and it can determine when to use Bloom filters and when to create state 
[Zah2009].  

In the default case, we use a source-routing-based approach, which makes forwarding 
independent from routing. Basically, we encode all Link IDs of the tree into a Bloom filter, 
placed in the packet header.  

Once all link IDs have been added to the filter, a mapping from the data topic identifier to the 
BF is given to the node acting as the data source, which now can create packets that will be 
delivered along the tree. To distinguish the BFs in the actual packet headers from other BFs, 
we refer to the in-packet Bloom filters (together with an additional byte) as zFilters, see Figure 
4.8. 

 
Figure 4.8 – ZFilter forwarding tables 

Link IDs and LITs 
To reduce the number of false positives, we now introduce Link ID Tags (LITs), as an addition 
to the plain Link IDs. The idea is that instead of each link being identified with a single Link ID, 
every unidirectional link is associated with a set of d distinct LITs (see Figure 4.9). This allows 
for constructing zFilters that can be optimized, e.g., in terms of the false positive rate, 



Document: FP7-INFSO-ICT-216173-PSIRP-D2.3 
Date: 2009-02-27 Security: Public 

 Status: Completed Version: 1.0 

 

PSIRP  62 (100) 
 

compliance with network policies, or multi path selection. The approach further allows for 
constructing different candidate zFilters and to select the best-performing BF from the 
candidates, according to any appropriate metric. 

 
Figure 4.9 – LIT generation 

The forwarding information is stored in the form of d forwarding tables, each containing the LIT 
entries of the active Link IDs, as depicted in Figure 4.10. The only modification of the base 
forwarding method is that the node needs to be able to determine which forwarding table it 
should perform the matching operations; for this, we include the index in the packet header. 

 
Figure 4.10 – LIT router model 

Construction  

The zFilter representing an actual delivery tree is computed from the participant list (publisher 
and subscribers) received from the rendezvous and the network graph collected by the 
topology management system [Zah2009]. When determining the actual forwarding tree, we 
can apply various policy restrictions (e.g., for link avoidance) and keep traffic engineering in 
mind (e.g., balancing traffic load or avoiding temporarily congested parts of the network). As a 
result, we get a set of unidirectional links to be included into the zFilter. The final step is ORing 
together the corresponding LITs of the included links, yielding a candidate BF. As each link 
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has d different identities, we get d candidate BFs that are "equivalent" representations of the 
delivery tree. That is, a packet using any of the candidates will follow, at minimum, all the 
network links inserted into the BF.  

Selection  

Recall that a false positive will result in an excess delivery; i.e., a packet will be forwarded 
over a link that is not part of the delivery tree. To achieve better performance in terms of lower 
false positive probability, we first consider two relatively simple strategies: 

• Lowest false positive after hashing (fpa): The selected BF should be the one with 
the lowest false probability estimate after hashing: min{r0^k0, …, rd^kd}, where ri is the 
fill factor, i.e. the ratio of 1's to 0's.  

• Lowest observed false positive rate (fpr): Given a test set Tset of link IDs, the 
candidate BF can be chosen after counting for false positives against Tset. The 
objective is to minimize the observed false positives when querying against a known 
set of Link IDs active in the forwarding nodes along the delivery tree. 

The fpa strategy is simple and aims at lower false positives rates for any set of link IDs under 
membership test. On the other hand, the fpr strategy yields the best performance of false 
positives for a specific test set at the expense of higher computational complexity.  

To further enhance fpr, false positives at different places can be weighted, i.e., we can 
consider some false positives less harmful than others. For example, we can avoid forwarding 
towards non-peered domains, resource constrained regions, or into potential loops. We call 
such selection criteria as link avoidance, since they are based in penalizing those candidate 
BFs that yield false positives when tested against certain links. For example, the following 
kinds of criteria could be considered: 

• Routing policies: Tset of links to be avoided due to routing policies.  

• Congestion mitigation: Static Tset  of links avoided due to traffic engineering (e.g., low 
capacity links) and dynamic Tset of congested links.  

• Security policies: Tset  of links avoided due to security concerns. 

As a consequence, having d different candidates each representing the given delivery tree is 
a way to minimise the number of false forwarding decisions in the network as well as 
restricting these events to places where their negative effects are smallest.  

Forwarding Nodes 
Each forwarding node makes forwarding decisions for the incoming packets and the 
procedure is roughly as follows. For each link, the outgoing Link ID is ANDed with the zFilter 
found it the packet. If the result matches with the Link ID, it is assumed that the Link ID has 
been added to the zFilter and that the packet needs to be forwarded along that link.  

With Bloom filters, matching may result in some false positives. In such a case, the packet is 
forwarded along a link that was not added to the zFilter, causing extra traffic. This sets up a 
practical limit on how many link names can be included into a single zFilter.  

Our approach to the Bloom filter capacity limit is twofold: Firstly, we use recursive layering 
[Day2008] to divide the network into suitably sized components. Secondly, the topology 
management system may dynamically add virtual links to the system.  

A virtual link is, roughly speaking, an unidirectional delivery tree that consists of a number of 
links. It has its own Link ID, similar to the real links. The functionality in the forwarding nodes is 
identical: the Link ID is compared with the zFilter in the incoming packets, and the packet is 
forwarded on a match.  
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Multicasting 
While the presented forwarding mechanism is based on including link IDs in the FId, it can be 
easily seen that the mechanism supports multicasting by nature. For a simple multicast 
scenario, where the packet is delivered to two different paths from a forwarding node, it is only 
required that both of these outgoing link IDs are added to the zFilter in the packet header. 
Once the forwarding node receives the packet, it delivers it to both of these outgoing 
interfaces.  

As the results show [Jok2009], in a simple scenario, without virtual trees, the system supports 
sparse multicasting inside a metropolitan area network. For dense multicast, however, it is 
required that the topology management creates some virtual trees to avoid too full Bloom 
filters in the packet headers that result in too high false positive rate.  

Stateless vs. Stateful Functionality 
So far, we have considered only stateless operations, where each forwarding node maintains 
only a static forwarding table storing the LITs. We now carefully introduce state to the network 
in the form of virtual links and fast failure recovery. While increasing hardware and signalling 
cost, the state reduces the overall cost due to increased traffic efficiency when facing large 
multicast groups or link failures. 

Virtual links 

Our goal is to maintain a forwarding efficiency at the level of 95% (i.e. 5% of false positives). 
This can be achieved in sparse multicast trees with the basic zFilter based forwarding 
mechanisms. However, in case of dense multicast trees, we have to consider other methods 
to maintain a decent forwarding efficiency.  

In case of dense trees, especially when multiple trees share multiple consecutive links, it 
becomes efficient to identify sets of individual links with a separate Link ID and associated 
LITs. We call such sets of links as virtual links. The abstraction introduces the notion of 
tunnels (or link aggregation) into our architecture -- a notion more general than traditional one-
to-one or one-to-many tunnels, being able to represent any link sets, including partial one-to-
many trees, forests of partial trees, many-to-one concast trees, etc.  

A virtual link may be generated by the topology layer, whenever it sees the need for such a 
tree. The creation process consists of selecting the individual links over which the virtual link is 
created, assigning the link a new Link ID, and computing the LITs. Once the virtual link has 
been generated, the topology layer needs to communicate the Link ID, together with the LITs, 
to the nodes residing on the virtual link.  

Note that virtual link maintenance does not need to happen in line speed. There are always 
alternative ways of sending the same data. For example, if a virtual link is needed to support a 
very large multicast tree, the sender can send multiple packets instead of one, each covering 
only a part of the tree.  

Once the virtual link creation process is finished, we can use a LIT of this virtual link in any 
zFilter instead of including all the individual LITs into it. This reduces the probability for false 
positives when matching the zFilter on the path. On the other hand, adding forwarding table 
entries into nodes increases the sizes of the forwarding tables. Given the typical Zipf-
distribution of multicast receivers [Liu2005], the sizes of the forwarding tables will still remain 
small compared to the current situation with IP routers. Unfortunately, falsely matching to a 
virtual link will mean falsely tunnelling packets through the entire connected part of the 
denoted subgraph. However, this can be mitigated by careful naming of the virtual links (e.g., 
more 1-bits than in the case of physical links) and by explicitly avoiding false positives during 
BF-selection.  
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Fast recovery 

Whenever a link or a node fails, all delivery trees flowing through the failed component break. 
In this section, we consider two approaches for fast re-routing, examining the simple case of 
single failures.  

Our first approach is to replace a failed link with a functionally equivalent virtual link. We call 
this the VLId-based recovery approach. The idea is to have a separate virtual backup path 
pre-configured for each physical link ID, to be dynamically used in case of failure. This virtual 
backup path has the same Link ID and LITs as the physical link it replaces, but is initially 
inactive to avoid false forwarding.  

The main advantage of this approach is that there is no need to change the packets. 
Basically, it is enough that the node detecting a failure sends an activation message over the 
replacement route, activating the backup route for both the failed physical link and any virtual 
links flowing over the physical link, and then starts to forward the packets normally. When 
receiving the activation message, the nodes along the backup path reconfigure their 
forwarding tables, starting to forward packets along the replacement path. As a result, the 
packets flow, unmodified, over the replacement path.  

Another approach is to have a pre-computed zFilter for the replacement route, encoding a 
valid representation of the backup path. In this method, when a node detects a failure, it 
simply needs to add the appropriate LIT(s) representing the replacement route into the zFilter 
in the packet. This method does not add any additional signalling or state to the forwarding 
nodes, but it increases the probability of false positives by increasing the fill factor of the 
zFilter.  

Both of the mechanisms are capable of re-routing the traffic with zero convergence time.  

Loop prevention 

In some cases false positives can result in loops; for instance, consider the case where a 
zFilter encodes a forwarding path A->B->C, but, due to a false positive, the zFilter also 
matches with a separate link C->A, which is used to forward packets from C to A. Without loop 
prevention, this will cause an endless loop of A->B->C->A. Obviously, we can construct a set 
of links that may cause a loop and use the fpr method to select only loop-less candidate BFs. 
However, this does not guarantee loop freeness as the network changes.  

As an alternative solution, we start with each node knowing the neighbouring nodes' outgoing 
Link ID and LITs towards the node itself. We call these as the incoming Link ID and LITs. 
Now, for each incoming packet, the node checks the incoming LITs of its interfaces, except 
the one from where the packet arrives, and compares them to the zFilter. A match means that 
there is a possibility for a loop, and the node caches the packet's zFilter and the incoming Link 
ID for a short period of time. In case of a loop, the packet will return over a different link than 
the cached one. Our early evaluation is based on this approach and suggests that a small 
caching memory does not penalize the forwarding performance.  

As a third alternative, at the inter-AS level we can divide the links into up, transit, and down 
ones, and utilise the valley-free traffic model. As a final method, it remains always possible to 
use a packet TTL similar to what IP uses today.  

4.6.2 Inter-domain 
Although the generic requirements also apply for the inter-domain case, we have some 
specific requirements that we need to take into account when designing the inter-domain 
forwarding mechanism. The solution presented in the previous section for intra-domain 
forwarding cannot be directly applied to inter-domain forwarding. There are both technical, 
e.g., scalability related, as well as administrative issues when the networks are operated by 
different instances. To overcome these issues, we need to design a different mechanism for 
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inter-domain forwarding. In this section, we present our basic assumptions, design goals, and 
technical considerations for the inter-domain forwarding function of the PSIRP architecture. 

Some Basic Assumptions 
The domain structure of the Internet and PSIRP network is explained in Section 4.5.2, and it 
forms the basis of the inter-domain forwarding work.  

Another basic assumption behind our work is that popularity of RIds follows a typical Zipfian 
distribution. This is supported by, for example, [Cha2007] and [Gill2007], where Zipf 
distribution parameters ranging from -0.56 to -2.5 were reported for user generated video 
content. Also, the usage statistics from user-generated video services like YouTube suggest a 
very heavy write-once, read-never characteristic, i.e., large amounts of content is generated 
(published) but never consumed (subscribed to). With this, we can assume that there are few 
massively popular RIds, relatively small number of RIds of medium popularity, and a large 
bulk of content that has zero or few simultaneous subscribers at any point in time.  

Design Goals 
We can define the following major design goals for an inter-domain forwarding solution in 
PSIRP:  

• The main requirement for forwarding structures being formed is efficiency as 
measured in latency and bandwidth of the communication between subscribers and 
publishers. Efficient routes in this sense are likely to be correlated with their goodness 
in number of AS level hops, locality, reliability, and costs to the parties involved.  

o Resulting forwarding node algorithms should be simple enough to allow a fast 
hardware implementation, i.e., enable forwarding at almost light speed. It 
follows that the more complex decisions related to routing, policies, security, 
and topology management should be done in specialized nodes with more 
logic. These slow path components are used to set up the simpler forwarding 
nodes that form the basic forwarding fabric.  

• Packet header overhead should be optimized for small size, optimizing bandwidth.  

• Only packets along forwarding trees that were successfully created by the rendezvous 
function should generally travel longer distances in the network and each stakeholder 
in the forwarding process should have clear incentives to participate in the operation.  

o FIds should be temporary and be renewed for long-term connections. That is, 
senders are not allowed to send packets to other domains without the consent 
of a receiver in that domain. This protects the network from DDoS attacks 
because circumventing valid forwarding trees is not possible and 
communication along forwarding trees is scalable and access controlled.  

• The forwarding algorithm should be able to scale to global use with only standard 
hardware used. The price of unit bandwidth per end-user to cover the costs of 
managing the network and to reach any location in the network should be reasonably 
close to constant for typical traffic matrix if the operators behave rationally.  

• The forwarding algorithm should support arbitrarily large multicast groups.  

• The forwarding architecture should be extensible for many uses and communication 
semantics on top of them.  

• The forwarding architecture should enable flexible peering markets, in which inter-
domain routing underlies different economic scenarios that are likely to be dependent 
on the type of information items or information networks (see Section 2) that are being 
transported.  
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Basic Operation 
The forwarding function assumes an input from the rendezvous (see Section 4.4) and inter-
domain topology formation function (see Section 4.5) that constructs, when successful, a new 
forwarding identifier (FId) and related meta-data that allows the subscribers to join an existing 
or a newly formed forwarding tree reaching the publisher of the RId and receive updates from 
the publisher. Basically, forwarding trees are source-based multicast trees that follow policy 
compliant routes. Packet routes should have a minimal stretch with mostly low latency 
operations performed on the packets at line-speed.  

The information of the mapping from the FId to the link layer resources can be partly encoded 
in the FId itself and partly stored as a state in the network. For example, a FId can denote a 
forwarding graph embedded in the network connecting the publishers and subscribers in a 
tree structure. In addition to basic routing, the network resources denoted by a FId can include 
space for caching data and cycles for simple processing of the data.  

The mapping from an FId to network resources can be abstract and probabilistic in nature, 
because it is important that the inherent redundancy in Internet topology can be utilized for 
fault tolerance with minimal delays to the end user. This means that a FId should fix the use of 
specific nodes in the network only when it is absolutely necessary. Ideally, the applications 
could choose a suitable trade-off between the amount of state and bandwidth needed in the 
network and the transparency of failures in the latency perceived. Also, the FId should not 
necessarily be thought as being a connected set of resources, but it can, for example in a 
mobile setting, determine disconnected structures at each network and these structure are 
sometimes joined while the underlying connection exists.  

We also assume that in the rendezvous process, each RId has an associated owner or 
publisher that controls the use of the RId and manages its life cycle and related resources. 
Typically, in a forwarding tree configuration, the owner of the RId resides at the root of the 
tree.  

Modular Design 
When a subscription is issued for a publication, the Rendezvous and Topology formation 
functions are responsible for locating the publication and creating a forwarding ID for the data. 
However, the global (inter-domain) topology formation function (see Section 4.5.2) cannot 
always have the required information about the forwarding inside a single domain. This may 
be for example due to the network operator's unwillingness to reveal its network topology, or 
due to the dynamic nature of the internal network in which case it would be too slow to inform 
constantly the global topology formation function about the changes inside the domain. For 
this reason, a dialogue between local (intra-domain) topology management functions and the 
particular inter-domain topology formation function is envisioned (see Section 4.5.2).  

Taking into account the previous, we need to create a system that can separate the inter-
domain forwarding from the intra-domain forwarding. The global topology formation function, 
being aware of the higher level topology of the global network, can only create forwarding IDs 
that are used to deliver the data closer to the actual destination using e.g. domain-level 
forwarding paths. 

Trade-offs Between Routing Information Approaches 
There are different alternatives to handle the multi-level forwarding IDs. It is possible to use 
stacking of different levels' FIds in the packet header (i.e., tunnelling), or performing switching 
between FIds on the packets closer to the subscribers' domains.  

Using a tunnelling style solution steadily increases the packet header and moves the required 
state information from the network to the packet header. On the other hand, using FId 
switching in the network creates some state inside the network, while it keeps the packet 
forwarding header compact.  
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Directly using the RId for switching between FIds at the edge of a subscriber's domain would 
immediately create a scalability problem since the number of active subscriptions can be 
huge, thus placing an immense processing and memory burden onto the edge routers. In 
order to be able to perform FId switching in a scalable way, we have to investigate the 
possibilities for this. One potential way of doing it could be ,e.g., distribution of the mapping to 
different nodes inside the domain and the edge node just making the decision to which 
internal mapping node the incoming publication is forwarded.  

It is also possible to use a combination of the aforementioned methods.  

Multicast Forwarding 
Another issue is that inter-domain forwarding mechanism, when combined with the intra-
domain solution, needs to support multicast in a scalable and efficient way. Here we have to 
consider different cases; subscribers at the leafs, subscribers both at the leafs and at the 
transit domains, different kinds of transmission speeds in different networks and what are the 
effects of this to multicast forwarding and so on.  

Transport Semantics Considerations 
In one-to-one communication the transport level semantics can be implemented in (trusted) 
end-points only (for example, TCP congestion control), but when there are multiple 
subscribers or publishers simultaneously exchanging information, the set of possible 
semantics become more complex. If we divide the routers along the forwarding path into 
branching forwarding nodes that duplicate the received packets into multiple output ports and 
core forwarding nodes that implement only unicast routing, then the end-to-end principle holds 
only between tree end points and branching routers, but branching routers may perform more 
complex operations like caching and queuing for the packets based on the metadata of the 
RId.  

Forwarding Incentives 
It is possible to think that each subscriber brings their own resources to the forwarding tree 
when they join it. This way the available resources for the tree grow along the number of the 
subscribers and each domain has an incentive to forward multicast messages.  

Forwarding trees with low branching factor should always have optimal stretch and are routed 
only through fast core routers. It is possible, however, that stretch is gradually worsened as 
the number of simultaneous subscribers in the forwarding tree grows.  

Feasibility Analysis 
Different approaches to the forwarding problem, taking into account our consideration in this 
section, need to be evaluated along multiple dimensions including: 

• latency  

• bandwidth  

• scalability  

• manageability  

• cost  

• security  

• flexibility 
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Optimizations 
It is possible for multiple RIds to share the same forwarding graph to minimize the amount of 
state needed in the network if the set of RIds are related to each other and most subscribers 
want to either receive all of them or none at all. For example, all RIds inside the same scope 
could share the same forwarding structure and subscribers might then receive some extra 
messages.  

4.7 Network Attachment 
As mentioned in Section 3.4.5, tasks handled by the network attachment component can 
include attachment point (AP) discovery and selection, authentication and authorization of 
users and nodes, and node configuration. In this section we describe how a network 
attachment mechanism that enables such operations can be designed. 

4.7.1 Background  
In [Kja2009], a pub/sub-based mechanism that is designed to work on top of a blackboard-
based communication infrastructure similar to the PSIRP component wheel is presented. The 
attachment protocol included in that design is based on a low-level single-packet pub/sub 
service similar to the one described in Section 3.3.1. In order to support different types of 
attachment operations, the protocol enables message exchanges over two-way 
communication channels between attachment points and nodes that join networks. Design 
alternatives and security considerations are also presented. [Kja2009] mainly focuses on 
asymmetric attachment scenarios, where single client nodes join existing networks.  

Thus we can use the abovementioned mechanism as our starting point, but in this architecture 
we utilize the concepts of scopes, rendezvous, and forwarding, and also want our attachment 
mechanism to be suitable for symmetric attachment scenarios.  

4.7.2 High-level View of an Attachment Procedure  
First of all, an attachment procedure can be initiated if one node subscribes to data published 
by another one. In addition, nodes seeking wireless network access must usually also be able 
discover and select APs on their available links as a first step. Consequently, a need for a 
scheme that makes is possible for two nodes to find each other, and also enables 
bootstrapping of pub/sub-based communication between them, can be seen.  

In order to provide information to others about themselves, nodes can spontaneously publish 
advertisements that periodically get sent out on their link interfaces. Alternatively, nodes that 
want to get such information can publish solicitations (i.e., subscriptions) that other nodes can 
respond to. In either case, these initial messages can contain various information about 
attachment points and networks4, including subscription data for establishing two-way control 
channels with selected nodes. Moreover, these advertisements and solicitations must be 
published with identifiers that other nodes know and are willing to subscribe to. Pre-distributed 
or well-known Ids can be used for this purpose.  

As indicated above, the initial information message should contain parameters for generating 
identifiers that the publisher has subscribed to. In this way other nodes can initiate attachment 
procedures with selected APs. Furthermore, by including similar subscription data in those 
messages, two-way communication can be established. Examples of node-specific operations 
that require this kind of communication model are authentication and authorization.  

As a result of the steps above, a control channel over which data can be exchanged has 
become available. An initial attachment procedure can be then be run, for example in order to 
negotiate about service/compensation contracts and provide nodes with configuration data. 

                                                
4  In fact, in some cases where further negotiations are not needed, all required configuration data can simply be 

put in this message. 
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The result of this phase is that network connectivity is enabled between the nodes attached to 
each other. Finally, the channel can remain and used for data updates, if needed.  

An additional issue that can be considered is re-attachment to other attachment points. 
Presumably, some initial messages again need to be exchanged between nodes. However, 
an already established control channel can also be used for informing other nodes in a 
network about an upcoming attachment point change. This can partly enable re-attachment in 
a make-before-brake fashion. This area is obviously close related to the mobility issue, for 
which additional considerations are presented in Section 5.3.  

4.7.3 Attachment Protocol Example  
Next we outline what an attachment protocol could look like (see Figure 4.11 below).  

 
Figure 4.11 – Attachment example 

We can begin by looking at node B which first starts collecting information about other 
attachment points by subscribing to scope SNA. SNA is assumed to be a commonly known 
scope that is used for bootstrapping network attachment. It is identified by SIdNA. This 
subscription actually implies that B is willing to receive information labelled with a 
corresponding FId, and that the network attachment component can be notified when new 
APs become available. Consequently, B receives publications PInfo-A and PInfo-C from nodes A 
and C respectively. The figure also shows that such publications can contain, for example, 
attachment point Ids, in addition to subscription information (e.g., an explicit {RId, SId, FId} set 
or data for generating them as needed) for attachment initiation messages. Nodes A and C 
have previously subscribed to those Ids. Furthermore, many other information elements can, 
of course, be included in these messages.  

In this case, B chooses to attach to node A. It does this by publishing an initiation message 
(PBA-0) with RIdBA-0 in scope SIdA. Similarly as above, subscription data for A-to-B control traffic 
is included in this message, along with other information, such as an authentication request, 
for example. A responds with message PAB-1 which can include a specific subscription for B-to-
A messages, and thus the two nodes have established the two-way control channel discussed 
previously.  
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The figure also shows that after exchanging a number of messages, the initial attachment 
phase is complete when A publishes PAB-n. At this point, network communication to nodes in 
networks between the two nodes should be completely enabled. If we, for example, assume 
that B is a client node and A and access provider, C might have received a cryptographic 
token proves that a contract for using network services has been established5. In addition, B 
could have received additional identifiers needed for contacting essential network elements, 
such as rendezvous points. Moreover, both nodes now know the characteristics about the link 
between A and B, as well as the agreed service level, which can be possibly be utilized by the 
topology and forwarding functions. Configuration of these components, as well as other 
communication between them and the NA component, is of course assumed to take place 
through the component wheel.  

As mentioned above, the control channel, that is, the subscription state for conveying 
attachment data between two nodes, can remain after the initial attachment exchange, and be 
used for updating various data, including the subscription state itself. 

                                                
5 Such a contract can, e.g., be used for authorization on individual publish/subscribe operations, or in fast 

attachment point changes. 
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5 Design Considerations 
While we focussed in Section 3 and 4 on the design for the overall architecture and its core 
components, the following section addresses design considerations that are not specific for a 
particular component but crosses many areas in our architecture. These considerations 
specifically concern mobility, security, and service discovery.  

5.1 Mobility 
The publish/subscribe paradigm has been regarded as especially suitable for the support of 
mobile communications. As a product of the indirect character of communication, anonymity 
and asynchrony of pub/sub networks allows them to adapt quickly to frequent connections and 
disconnections, making them advantageous for mobile environments [Hua2004]. Furthermore, 
the shift towards an information centric paradigm means that multicast will become the norm 
rather than the exception, as it is the most appropriate mechanism for the efficient delivery of 
content to groups of subscribers. Hence, multicast assisted mobility [Fes2007] re-emerges as 
a promising research direction, albeit in a new context.  

Typically, mobility support is realized by handoff management mechanisms. A simple way to 
cope with a handoff on the subscriber and publisher level is for subscribers to re-subscribe to 
those publications they are subscribing to, and for publishers to re-establish their publications 
at the new location. The rendezvous service is responsible for maintaining the proper set of 
rendezvous points and multicast forests. This requires that the routing and forwarding 
topology is updated accordingly during and after handoffs. The main problem then becomes 
how to optimize the rendezvous system for this operation. Apart from resuming 
communication from a new point of attachment to the network, it is also desirable to achieve 
reliable, mobility-safe communication [Tar2007]. This basically entails the in-order delivery of 
all publication items to all their subscribers. Per publication sequence numbers are considered 
to be a convenient technique for guaranteeing in-order delivery. On the other hand, 
publication loss is prevented by buffering publications during a handoff procedure.  

 
Figure 5.1 – Multicast assisted mobility (prefetching) 
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Apart from these above high-level mechanisms, an extended set of enhancements will be 
considered in supporting mobility in PSIRP. As already mentioned, the multicast nature of the 
forwarding substrate is expected to assist mobility. In multicast assisted mobility, termed as 
prefetching [Bur2004] in pub/sub networks, multicast trees are created in order to distribute 
data around the area that a mobile user resides in (see Figure 5.1). The purpose of this 
distribution is to reduce the duration of the handoff procedure, since data will already be 
available in the new network by the time a mobile subscriber reaches this network or 
forwarding paths may have already been established for a moving publisher. The scope of this 
distribution can be either statically determined, for example, data are forwarded to all 
neighbouring areas, or based on the expectation of possible movements of the mobile node. 
The cost of this optimization consists of the resources consumed for the proactive handoff 
preparation in multiple areas and/or for the establishment of reliable prediction mechanisms 
(e.g. statistics collection). Furthermore, routing and forwarding updates may be efficiently 
handled by exploiting the multicast nature of the routing substrate. Though dependent on the 
topological characteristics of the multicast trees, re-attaching to an already established 
forwarding tree may prove beneficial for the provision of fast handoffs.  

As another simple optimization of a handoff mechanism, we observe that if some RIds are 
already subscribed or published in the new network of a mobile node, the re-establishment of 
forwarding paths is avoided. This requires the network to be able to filter and merge existing 
with new subscriptions/publications.  

5.1.1 Router and Network mobility 
Similar mechanisms can be used for router and network mobility, although in this case 
function of re-subscription and re-publishing becomes a function of aggregating a set of 
publications and subscriptions. With this, the mobile router that receives a subscription from its 
mobile network becomes a rendezvous point for the nodes it serves. When the mobile router 
moves, it simply updates the publish and subscribe requests to the rendezvous system, which 
updates the forwarding tables in the network to deliver data to the new location.  

5.1.2 Overlay multicast assisted mobility  
In order to investigate the intrinsic characteristics of publish/subscribe and multicast network 
architecture with respect to mobility support we have initially focused on an overlay variant of 
the PSIRP paradigm based on Scribe [Cas2002a]: an overlay publish/subscribe system 
providing multicast routing. In this first approach we have also attempted to take advantage of 
specific characteristics of the underlying Distributed Hash Table (DHT) scheme [Row2001] 
and further explore the potentials of an overlay realization of the PSIRP vision.  

Overlay routing  
Scribe is based on Pastry [Row2001], an efficient and scalable DHT substrate. Unlike other 
DHT schemes, Pastry attempts to employ proximity metrics, such as the number of IP hops or 
the round trip time towards other nodes, when choosing among the potentially large number of 
DHT nodes that may relay the data in question. Due to the use of proximity metrics the 
average distance a message travels does not exceed 2.2 times the distance between the 
source and the destination in the underlying network [Cas2002b]. Scribe maps the name of 
each multicast group to an identifier and makes the node responsible for that identifier the 
rendezvous point for that group. A subscriber to a group issues a Scribe JOIN message 
towards the RV of the multicast group. As the JOIN message propagates, reverse path routing 
state is established until a node already in the tree is found, thus forming a multicast tree 
rooted at the RV point. When the RV receives a publication it forwards it to all nodes that have 
expressed their Interest for this publication.  

One of the main reasons for choosing this particular overlay multicast mechanism is that 
multicast routing state is maintained in a completely decentralized fashion: each node in a tree 
is only aware of its immediate ancestors and descendants, eliminating that way the signalling 
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traffic needed in order to maintain global state information. Hence, in a highly dynamic 
environment, with a multitude of mobile nodes and where group membership (i.e. 
subscriptions) not only changes due to content-related reasons but also due to mobility, state 
management is simplified in favour of scalability. Furthermore, according to the Route 
Convergence (RC) property of Pastry, the distance travelled by two messages sent to the 
same key before their routes converge is approximately equal to the distance between their 
respective source nodes in the proximity space. This property is of particular importance in 
mobile environments as it will be argued and analytically demonstrated in the following 
sections.  

Mobility Support 
In this architecture every router participates in Pastry and can serve Scribe multicast trees as 
well. Every router is assigned a unique ID and hence, a unique position in the identifier space. 
On the other hand, (mobile) end nodes neither participate in overlay routing nor carry an IP 
address. This clearly reflects the target of breaking the end-to-end semantics of today’s 
communication. Every node is directly connected to an overlay access router (OAR), which is 
the router providing access to the overlay network and the multicast communication substrate. 
Mobile nodes are connected to OARs through their currently associated access point (AP). 
APs may act as simple bridges to the wired part of the network, may form groups connected to 
a single OAR so that link layer mobility (roaming) is provided in certain parts of the network or 
they can even act as OARs themselves. For simplicity, we will consider the first option in the 
reminder of this section.  

Whenever a (mobile) node wishes to act as a publisher, it simply delivers its publication to its 
OAR, which is then responsible to deliver it to the proper RP. Whenever a (mobile) node 
wishes to subscribe to a publication it sends a subscribe(RId) message to its OAR. When an 
OAR receives a subscribe(RId) message, for the first time, it issues a Scribe JOIN message in 
order to join the multicast group of the publication. What actually changes with mobility is that 
as mobile nodes (MNs) move from one AP to another it is possible that they will change their 
OAR as well, performing a handoff. In this case they must inform their new OAR about the 
publication they are interested in. Of course, there is always the case that an OAR is already a 
member of the multicast tree for a publication a MN is interested in. This may happen because 
another end node that resides on that OAR has already subscribed for the same publication or 
because, due to the overlay nature of Scribe, this OAR has become part of this multicast tree 
in order to serve another OAR as a forwarder. In that case the OAR has only to forward the 
publication towards MN.  

The way an OAR leaves a multicast group is by sending a LEAVE Scribe message after a 
period of time from the moment it anticipates the need to leave the multicast tree. This 
anticipation is based on the state of the association of each, currently attached MN with the 
wireless access point. In practice, an OAR decides to schedule the LEAVE Scribe message 
for a specific group when the last mobile member of that group has disassociated from the 
AP. The reason why an OAR does not immediately leave the multicast group is two-fold. First, 
whenever an OAR leaves a multicast group the multicast tree for this publication is (partially) 
destroyed so it will not be possible for a moving MN to take advantage of the multicast nature 
of Scribe and the route convergence property of Pastry, unless, of course another mobile 
node in the same area has subscribed to the same tree.  

The support for mobility in the described overlay architecture is primarily based on the 
following two characteristics. First, by employing multicast as the main routing mechanism, 
routing information updates can be localized. This means that when a MN moves from a OAR 
to another, traffic can be diverged to the new point of attachment at the lowest common 
ancestor (CA) of the two visited OARs in the tree. Second, due to the route convergence 
property of Pastry, this CA is expected to be close enough to the new point of attachment so 
that the routing update can be performed without large delays. The intuition here is that when 
a MN moves from one access point to another, these access points are logically expected to 
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be close enough in the proximity space, so the re-subscribe message of the MN will meet the 
CA after travelling a short distance in the proximity space. 

 
Figure 5.2 – Overlay multicast assisted mobility example 

5.2 Security Design 
Our security goals include confidentiality, integrity, availability, and accountability. Although we 
must take these goals into account at multiple levels, this section mostly concentrates on 
network level security. Potential targets of the attacker include: 

• End-nodes like a publisher and subscriber  

• The underlying network infrastructure including physical links, forwarding nodes, and 
nodes which handle network services, like rendezvous points  

• Network services in general, including forwarding, rendezvous, caching, network 
attachment, and compensation.  

The system should be resilient and secure against internal attackers. We must assume that 
any entity within the network can be a potential attacker, including forwarding and rendezvous 
nodes, which are a basic part of our architecture.  

Our goal is to investigate multiple security choices for PSIRP. Different parts of the PSIRP 
system like rendezvous and forwarding may use different security solutions. 

5.2.1 Direct and Indirect Cryptographic Associations  
It is important to notice that the security mechanisms applied depend on the creation time of 
content. Therefore, identifiers associated to content may be generated in different ways 
depending on whether the content exists in the system or not at the time when the related 
meta-data is accessed. For example, it is possible to compute a cryptographic hash over a 
movie clip and use that hash for the identifier of the clip. On the other hand, it is not feasible to 
compute in advance a hash over a full content of a real time voice call. Still, we have to offer 
meta-data identifiers (i.e. container handles) for the subscribers to the channels and to full 
content in order to support accessibility and reachability, independent of the usage scenarios.   
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We can divide the association between identifiers and data objects into two groups based on 
the type of identifiers. The groups are: direct cryptographic and indirect cryptographic 
association. The direct cryptographic associations can be used with fixed data objects while 
the indirect association is useful, e.g., in the case of data channels.  

In the direct association case, there is a direct mapping between RIds and content. Typically, 
when the content is modified the corresponding identifier is also changed. For example, 
cryptographic one-way hash values that are computed over a block of data, like SHA-256, 
provide this kind of property. We note that direct cryptographic associations can only be 
established when the content is created before it is accessed. The benefit obtained is that we 
can guarantee the integrity of the original data object. However, the security of the approach 
relies heavily on a trusted rendezvous mechanism.  

In the case of real-time media, we can use indirect cryptographic associations, like public-key 
techniques. A public key can be used as part of a RId or a SId. The trust is based on the 
association between a public-key pair and a priori known legal entity, like a person or a 
company. An essential difference compared to the direct association is that the identifier is 
not, by default, changed when the content is modified. In a way, it is possible to use the same 
public key pair together with additional labels to name different kinds of contents. To uniquely 
identify a SId (a container) or a RId, we can associate it to a public key pair. Basically, it is 
possible to concatenate a public key with some other label that also may or may not have 
cryptographic properties. This evidently results in certificates that associate the public key with 
the label.  

Using certificates as primary identifiers allows us to support different kinds of trust models in 
the system. Basically, it is possible to allow each host to self-sign its certificates. Another 
alternative is to deploy third parties that sign the certificates and authorize other hosts to use 
the signed identifiers.  

Information Freshness  
When the same content is stored at multiple caches, it is challenging to keep all caches up to 
date. Version control is an interesting research area from the security point of view, because 
old and outdated information in the system may result in loss of time and money. One way to 
overcome the challenges in the version control would be to define a home location for each 
information object. However, this easily leads to a solution where the home is a single point of 
failure, and this may open the system for DoS attacks. On the other hand, when the 
information is replicated to multiple locations in the network, it becomes unclear who is the 
owner or acts as a trust anchor for the original content.  

One viewpoint to the version control problem is to consider that a SId (and the related public-
key pair) can be used to associate together a set of different versions of a document. It may 
also be possible to consider that a new version of a document is just a delta compared to the 
original one. The approach requires usage of algorithmic identifiers to associate subsequent 
RIds of a document together. An algorithmic identifier denotes that the subsequent identifiers 
can be associated together in a provable way. For example, Lamport’s one-way hash chains 
provide a mechanism that can be used for algorithmic identifiers.  

Through-the-Stack Security Solution  
The access technology and maximum transmission units (MTUs) set the limitation for the size 
of chunks that can be transmitted over physical communication media. The content must be 
divided into data chunks that are transmitted in packets over the network between hosts. The 
data chunks must be strongly associated with the RId of the original full content and SId to 
provide integrity protection. In addition, each data chunk should have its own RId to support 
network coding, distributed caching and per packet integrity protection.  

It seems that the security mechanisms that are applied to SIds and full content can also be 
used with data chunks. This means that the same public-key pairs can be used to sign 
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individual data chunks and full data objects. On the other hand, it may be feasible to compute 
a hash of each data chunk and associate the subsequent data chunks with each other using 
algorithmic identifiers. At this level, the algorithmic identifiers can be used together with public-
key signatures to authenticate packets, e.g., belonging to the same voice call or a movie clip.  

A Rendezvous Mechanism based on Direct Cryptographic Association  
These direct and indirect cryptographic associations are also coupled with the rendezvous 
architecture security design. The rendezvous system may act as a trust anchor and a trusted 
third-party both for publishers and subscribers. Another alternative is that the publisher and 
subscriber have a trust relationship between them and the RId is acquired via some out-of-
band mechanism. However, the out-of-band mechanism must also be protected.    

The main advantage of the direct cryptographic association is that it does not always require a 
trust relationship between the content subscriber and publisher. Basically, the approach 
makes it possible to verify the integrity of the original content at the subscriber’s end. In this 
case, delivering the RId to the subscriber requires an integrity-protected channel between the 
publisher and the rendezvous system and between the subscriber and the rendezvous 
system.  

Both the publisher and the subscriber trust the rendezvous system to map the subscriptions to 
the publications in an accurate way. Basically, the rendezvous adds an indirection layer to the 
architecture. Note that each in-direction layer must be protected with a security mechanism.  

A Rendezvous Mechanism based on Indirect Cryptographic Association  
When a public-key pair is associated to content the resolution mechanism is responsible for 
mapping the subscriptions to the right public keys. Also in this case, the resolution mechanism 
adds an additional indirection layer to the system. From the subscriber’s point of view, the 
situation is a bit different compared to the previous one because the signature is not directly 
associated to the content. Instead, the publisher may sign any kind of content using the same 
public-key pair. This was earlier called an indirect cryptographic association. In a way, trust is 
based on the assumption that the private key is possessed by a well-behaving host. In other 
words, the information object has an ‘owner’. Earlier, with the direct cryptographic association, 
the subscriber did not need to care about the publisher’s trustworthiness. In a way, the object 
did not have an ‘owner’.  

Technical solutions and their consequences for security  
The basic security operations, integrity and confidentiality protection, can be implemented with 
different kinds of cryptographic mechanism. These mechanisms are here divided into public 
key, one way hash and watermarking techniques. However, the watermarking techniques are 
still for further study.  

The public key techniques can roughly be divided into public key and threshold cryptography. 
In both cases, the length of the public key and certificate material carried in packets cause 
tradeoffs in the protocol design. Basically, there is a tradeoff between the length of the carried 
security header and the payload size. To maximize the payload length in the carried 
messages it is possible to use ECC techniques where the length of the public keys and 
signatures is shorter compared to traditional RSA public key material. In addition, it is possible 
to increase the computational speed of public key cryptographic operations by using specific 
FPGA cards at hosts.  

Currently, Packet-Level Authentication (PLA) is an ECC-based approach that signs each 
packet transmitted in the network. It may also be possible to protect the integrity and 
confidentiality of packets using traditional symmetric cryptography. Without an explicit host 
identifier namespace, it is not obvious how to authenticate publishers and subscribers to each 
other. On the other hand, each private key that is associated to a data object is stored at 
some host. Therefore, the public key technology may generate a shadow host namespace.  
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It is also evident that the rendezvous mechanism requires authorization in one form or 
another. This kind of requirement results easily in non-scalable PKI solutions. To avoid this 
kind of architectural design choice, it may be possible to replace traditional authorization 
certificates with threshold cryptography in several parts of the architecture.  In a way, the 
private key material is distributed into multiple places in the system and thus increases the 
robustness of the system. In public key based approaches, the owner of the private key works 
as a trust anchor and owner for the corresponding data object. Using threshold cryptography, 
it is possible to design an architecture where the content has multiple trust anchors.  

In addition to public keys, one-way hash values are useful for generating primary identifiers for 
data content. Lamport’s one-way hash chains can be used to bind subsequent data objects 
together. It may possible to apply the main principle of TESLA to bind different versions of a 
mutable object together or to provide lightweight integrity protection of packets at the link 
layer.  

Finally, the freshness of the data is a hard problem from the security techniques point of view. 
When data and related meta-data are securely time-stamped, the whole system depends on 
synchronized clocks. It may turn out that this is too tough a requirement. However, to what 
extent this time stamping becomes part of the resolution system is not yet determined.  

5.2.2 Network Packet Authentication and Access Control 
To meet the outlines security requirements we require the ability to determine that the packets 
travelling across the network are both authentic, and have not been tampered with by 
unauthorised parties. Authentication can be performed by parties at the edge of the network, 
although this has several weaknesses: 

• Signatures over the payload of the packet cannot protect the integrity of the routing 
information in the network header. Potential attackers may tamper with routing 
information or replay previous packets to alternative destinations  

• Malicious packets may only be detected after they have traversed the network. This 
enables Denial-of-Service attacks to be launched on both network and end host 
resources.  

By providing authentication on the packet level as part of the PSIRP architecture we allow any 
legitimate party in the network to test whether a packet is authentic and take appropriate 
action (e.g., dropping the packet) if it fails such checks.  

To check authenticity, we do not need to disclose the identity of the originator of the packet. 
Instead, it is sufficient to determine that the packet has been sent by a party authorised by 
another party with whom we have a trust relationship. This can protect confidentiality (or 
privacy of living persons) while allowing different forms of accountability. In this manner we 
may authenticate that the packet originates from a publisher who has an account with their 
ISP, or alternatively authenticate that the packet comes from a user within an organisation.  

Such authentication is applied to all packets on the network, whether they come from 
publishers and subscribers, or from network components and services (for example packets 
between rendezvous service providers).  

After accepting that authentication on the packet level has a role in network security, the 
question becomes as to what properties of a genuine packet we are trying to authenticate. In 
order to answer this question, we need to consider some of the actors in the publish/subscribe 
network and some of their relationships.  

Subscriber 
A subscriber to information wants to ensure that any packets it receives are genuine packets 
in relation to its subscription (that is published to the same identifier and containing content 
corresponding to that identifier). It also wants to ensure that it is not subject to denial of 
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service attacks (using genuine content and identifiers in order to overwhelm its resources). To 
do so the subscriber needs to be able to check that:  

• The identifier relates to a current subscription  

• The content and identifier have not changed since publication  

• The packet is not a replay of an earlier packet (to the current or previous subscribers)  

• The publisher is trusted to create content for that identifier 

This last point can be considered in two parts: 

• Is the publisher trusted by the subscriber?  

• Does any controller of the identifier trust the publisher? 

The subscriber may know of, and directly establish trust with the publisher. Alternatively, the 
subscriber may trust an intermediary such as the ISP of the publisher. Such an intermediary 
may be able to vouch that the publisher has not abused other subscribers (by sending spam 
or performing Denial-of-Service attacks), and thus can perform a powerful additional role.  

We also see that the notion of the identifier controller may not be the same as either the 
publisher or subscriber. For example, one publisher may create and control an identifier to 
which it delegates publication rights to other publishers. Alternatively, the controller many be 
one of a number of subscribers, or simply a third party management system. In cases where 
the identifier controller is simply either the publisher sending the packet or the subscriber 
desiring the check, the subscriber simply need to trust the publisher.  

Since the subscriber is the ultimate destination for the packet, preceding parties such as 
network forwarding providers can undertake these checks on behalf of the subscriber. This 
can be advantageous to both the forwarding network and the subscriber since there will be 
financial benefits to not sending a malicious packet across its own network, or potential further 
benefits from not instructing onward networks to deliver the packet.  

Forwarding Network 
The forwarding network may inherit the concerns of subscribers, particularly if the subscribers 
are its direct customers (i.e., the forwarding network is an ISP). It also has its own separate 
concerns over the authenticity of the packet.  

In particular the forwarding network is concerned that it will receive appropriate remuneration 
for the forwarding of the packet. Such remuneration may come from direct cash settlement, or 
from reciprocal schemes and other incentives. Thus in forwarding the packet, the forwarding 
network needs to be sure that someone is accountable for the packet, whether this is the 
original publisher, or some intermediary who has inherited the accountability. In essence, it 
needs to ensure that someone is accountable for the packet. 

The forwarding network also needs to protect its own resources. It is conceivable that 
publishers can launch Denial-of-Service attacks to overwhelm the forwarding and bandwidth 
resources of the forwarding network. To do so, an attacker may publish to existing subscribers 
or may also engineer subscribers to direct traffic patterns. Thus, the forwarding network needs 
to be able to trust:  

• That the publishers are not deliberately attacking network resources  

• That the subscribers are not deliberately attacking network resources  

In a similar manner to subscribers, the forwarding network may place its trust in upstream 
network providers to perform these checks on its behalf, potentially gaining the advantage of 
the combined reports of multiple forwarding networks.  
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Rendezvous system 
Rendezvous systems can be considered as a specialised case of subscribers. They use the 
forwarding network in order to receive subscription requests (from subscribers) or subscriber 
resolution requests (from publishers or their proxies).  

As such, they share the concerns of subscribers (although for more specialist content such as 
subscription messages), but also share commercial and security concerns similar to those of 
the forwarding networks. In this regard, the rendezvous service needs to know that someone 
is accountable for the requests it receives, and also that publishers and subscribers (or any 
intermediating party) are not conducting Denial-of-Service attacks on its resources.  

Denial-of-Service attacks on the rendezvous system can be conducted to directly attacking 
the communication, processing, or storage capabilities of the rendezvous system, or in order 
to attack peered rendezvous services or underlying forwarding networks through the 
propagation of control messages. Attacks on the rendezvous system may also have the 
motivation of damaging a publisher or subscriber who uses a particular identifier or 
rendezvous system. These concerns also hold for other network components such as the 
inter-domain topology resolution.  

Publisher 
While it is certainly true that the publisher of packets to the network may also elect to 
subscribe to information (such as flow control requests), there may also be a limited amount of 
packets that are sent back to the publisher through other network actions. For example, 
network attachment will result in some initial network information being transmitted to the 
potential publisher.  

Another example of packets received by the publisher is in response to an advertisement to 
the rendezvous system. This advertisement allows subscription information to be pushed back 
to the publisher in order to control their sending of publications into the network. Such 
feedback may simply consist of a signal, that informs the publisher if there are no subscribers, 
or may provide more detailed information (such as a subscriber count, or potentially even 
subscription metadata such as flow rate requests). In terms of the architecture, the 
advertisement method can be viewed as a subscription to subscriber information for a 
particular Rendezvous Identifier. The rendezvous system is the publisher of information to the 
related ‘subscriber info’ Rid.  

In these cases, the advertiser expects to receive genuine subscriber updates from rendezvous 
systems that participated in the advertisement process.  

5.2.3 Packet Level Authentication (PLA) 
Packet Level Authentication (PLA) [Lag2008, Can2005] is a novel way to secure networks on 
the network layer by providing availability and protecting the network infrastructure from 
several kinds of attacks, like denial-of-service (DoS) attacks. PLA is based on the assumption 
that per packet public key cryptographic operations are possible at wire speed because of 
new cryptographic algorithms and advances in semiconductor technology.  

The main principle of PLA is to allow benevolent traffic while giving the ability to detect and 
stop malicious traffic as quickly as possible. Unlike traditional network layer security solutions, 
PLA provides the ability to nodes in the network to immediately detect attacks by checking the 
authenticity and integrity of every packet. In comparison, when traditional end-to-end security 
solutions like IPSec [Ken1998] are used, only the end point of the connection can verify the 
authenticity of the packet. In contrast to link level solutions, PLA allows every node to verify 
the packet independently without having to trust intermediate nodes that have previously 
handled the packet on the path from the originator. PLA aims to complement existing security 
solutions instead of completely replacing them.  
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A good analogy to the principle of PLA is a paper currency. Anyone can independently verify 
whether the bill is authentic simply by checking security measures inside the bill like 
watermark and hologram. There is no need to contact the bank, which has issued the bill. 
Using the same principle, PLA gives every node a possibility to check whether the packet has 
been modified, duplicated, or delayed without a previously established trust relation with the 
sender of the packet.  

PLA header 
PLA relies on cryptographic signature techniques, and it adds a separate PLA header to the 
packet. This PLA header contains all the necessary information for verifying the packet's 
authenticity and integrity. The structure of the PLA header is shown in Figure 5.3. Fields of the 
PLA header are explained below. 

 

 
Figure 5.3 – The structure of the PLA header 

The trusted third party (TTP) certificate corroborates the binding between the sender's identity 
and its public key. It also guarantees that the sender is a valid entity within the network and is 
authorized by some trusted third party. To reduce computational and bandwidth overhead, 
PLA utilizes identity-based implicitly certified cryptographic keys [Bru2007]. As a result, the 
sender's public key can be calculated from the TTP certificate. The sender's public key also 
introduces accountability, i.e., the sender cannot deny sending the packet.  

The timestamp field makes possible to detect delayed packets. Such packets can be a sign of 
replay attacks.  

The sequence number field contains a monotonically increasing number. It is used to detect 
duplicated packets.  

Finally, the PLA header contains a cryptographic signature over the whole packet ignoring 
some IP header fields like hop limit, since these change during the lifetime of the packet. The 
signature protects the integrity of packet and guarantees that any modifications of the packet 
can be detected.  

Cryptographic solutions and performance 
To reduce bandwidth overhead produced by signatures and public key information, PLA uses 
elliptic curve cryptography (ECC) [Kob1987, Mil1985]. A 163-bit EEC key used with PLA offers 
the same cryptographic strength as a 1024-bit RSA key [Men1995]. As a result, the total 
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length of the PLA header is only about 1000 bits and therefore PLA produces less than 10% 
bandwidth overhead with standard 1500 byte packets.  

Public key cryptography is very computationally intensive, and this is the main reason why per 
packet public key cryptography has not yet been implemented on a large scale. This problem 
can be alleviated by using a dedicated hardware for accelerating signature verifications and 
generations. An FPGA-based proof-of-concept hardware accelerator for cryptographic 
operations has been developed for PLA [Jar2007, For2008]. While the FPGA is very suitable 
for development because of its flexibility, its performance is very low compared to the 
application specific integrated circuit (ASIC). However, Altera offers Hardcopy [Alt2008] 
technology to convert an existing FPGA design to a dedicated ASIC. According to simulation, 
such an ASIC built on 90 nm manufacturing process would achieve 850,000 signature 
verifications per second, which approximately equals to 10Gbps throughput with 1500 byte 
packets. An optimized ASIC on a modern manufacturing process would achieve a significantly 
better performance. As a result, PLA is scalable to high-speed core networks, as long as a 
dedicated hardware is used for accelerating cryptographic operations.  

PLA and PSIRP 
We consider PLA to be one candidate for securing the PSIRP networking functions. PLA is a 
logical choice since it is based on public-key cryptography and at least some PSIRP labels are 
derived from cryptographic keys.  

One example is utilization of the PLA's trusted third party certificate mechanism for providing 
and enforcing access control to scopes. First, we assume that the scope is owned by an entity 
possessing a private/public key pair, and a scope identifier is derived from this public key 
through, for example, hashing. The user wishing to access the scope, will authenticate itself 
through some means, and as a result will receive a certificate from the scope. This certificate 
has the same structure as the PLA's TTP certificate and therefore contains scope's public key. 
Basically it will replace the TTP certificate present in a standard PLA header. Forwarding 
nodes will forward data traffic to the scope only if such certificate is present in packet's 
header, effectively preventing the abuse of resources. The basic PLA security mechanism will 
protect this certificate from tampering.  

We plan to investigate further how PLA can be used to secure other functions of PSIRP.  

5.2.4 Tesla 
Timed Efficient Stream Loss-Tolerant Authentication (TESLA) [Per2002] is a protocol 
designed to authenticate broadcast and multicast traffic. Authors of TESLA consider per-
packet cryptographic signatures to be too computationally intensive to use on a large scale. 
Therefore, TESLA bases its operation on loose time synchronization between sender and 
receiver, as well as through the use of one-way chains. A one-way chain is a cryptographic 
primitive in which every element Sn in the chain can verify all the elements Sk where k > n. The 
first element of the chain, for example, can verify all other elements, and is thus the last 
element revealed to end-users.  

At the initiation phase, the TESLA client and sender loosely synchronize their clocks. Then, 
the sender splits the time into equal size intervals and assigns an element of the one-way 
chain to each interval. For each time interval, the sender computes a message authentication 
code (MAC) using the corresponding element of the one-way chain as a cryptographic key. 
Finally, the sender broadcasts the packet and reveals the value of the one-way chain after a 
known delay. The receivers must buffer packets until they receive the requisite values in the 
one-way chain that can be used to validate them. Even if the receiver looses a disclosed key, 
it can recover by using the keys that it will receive afterwards. Moreover, receivers discard any 
packet, which contains a MAC that was computed with a key that was already revealed since 
these packets may be forged. In this manner, a repeat attack is avoided.  
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Tesla with instant message authentication  
TESLA requires that each receiver in the multicast or broadcast tree will have to buffer 
packets waiting for authentication and integrity verification. Thus, it multiples buffer demands 
on the one hand. On the other hand, assuming an adversary model that enables an attacker 
to inject fake packets (having an out-of-chain HMAC signature) during a disclosure interval, 
then these packets are also buffered for validation, and in this case for dropping. If the 
attacker is permitted to inject multiple packets, then receivers' buffers will be eventually 
overflowed. This scenario shows that pure TESLA is vulnerable to local and time-constraint 
DoS attacks, in the case where a bogus packet flooding occurs. The density of these attacks 
depends on the adversary capabilities, the buffer size, and the disclosure threshold. Since 
multiple receivers are involved in the packet forwarding tree, optimizing these parameters 
sounds tricky.  

Some recently proposed methods are found to be more efficient for fast packet authentication. 
For instance, instant message authentication proposes a way to exchange receiver buffering 
with sender buffering. The sender stores the hash value of a later packet, to an earlier packet 
and hence as soon as the earlier packet is authenticated by the receiver, the later packet can 
be authenticated with the usage of the hash value, as well. To construct the packet for the 
message chunk Mj during the time interval Ti the sender appends the hash value of the 
message chunk Mj+vd which is H(Mj+vd),the MAC value (where MAC = (Ki,Dj)), and the key that 
decrypts earlier packets Ki-d where d is represents the predefined disclosure period. The 
following figure illustrates the construction of two consecutive packets. The earlier packet is Pj 
and the later packet is Pj+vd. 

 
Figure 5.4 – Tesla 

When packet Pj+vd arrives the receiver uses the key 'Ki' in order to authenticate packet Pj (this 
packet was buffered by the receiver). If packet Pj is successfully authenticated, the receiver 
can conclude that H(Mj+vd) is also authentic. The fact that H(Mj+vd) is authentic permits instant 
message authentication of the chunk Mj+vd. This TESLA variation adds flexibility for dynamic 
sending rate. This is achieved if the sender attaches as many as needed hash values of 
multiple future packets. Moreover, since there is no or less buffering needs as far as the 
receiver is concerned, this scheme is less vulnerable to DoS attacks.  
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5.2.5 Security and Algorithmic IDs  
In Section 4.1.5, we introduced algorithmic identifiers (algIds) as a concept to build information 
collections (see Section 2) for both network and application functions, such as fragmentation, 
flow and error control as well as others. Producing and testing algorithmic IDs is a crucial part 
of their usage, e.g., for testing parent or child relations.  

From a security perspective, we can consider that the functions used to produce and test 
algIds may take cryptographic keys (e.g. public and private key-pairs) as input. This may offer 
two advantages. For the purposes of integrity, a public key can be used to determine if a 
specific party was involved in producing the algId.  

For the purposes of confidentiality, a public key may be involved during the generation of the 
algIds. This would mean that only a party possessing the corresponding private key would be 
able to test the relationship between the new algId and its parent identifier. The use of multiple 
keys could thus determine the ability of a recipient to navigate the graph of algIds and test 
different relationships. This can be used to protect the privacy of the algId creator (e.g., 
publisher or subscriber) against attacks that correlate different information identifiers in the 
network. 

5.3 Service Discovery 
Discovery of various kinds of entities is a fundamental feature for a network architecture. We 
distinguish between three different types of discovery, namely discovery of protocol suite 
modules and their options, network attachment, and discovery of services offered in the 
distributed environment.  

The ability to discover protocol suite modules involves reflection on the part of the component 
wheel and the PSIRP APIs. The components of the wheel and helper functions need to be 
able to discover other modules, their dependencies, and possibly introduce configuration 
changes to the suite. Care needs to be taken in any possible reconfiguration of the component 
wheel to prevent undesired side effects. Nevertheless, dynamic configuration by utilizing 
reflection is a desirable feature for a protocol suite that aims to offer flexibility.  

Network attachment includes the basic ability of a node to attach to the PSIRP network and to 
gain the communications capability. After the basic network attachment, the node needs to be 
able to discover services in the network in various scopes.  

The discovery of services involves either directly querying for a service given its scope and 
name, or by enumerating a larger candidate set to find the correct services. Service discovery 
utilizes rendezvous points for obtaining information about scopes and services offered in 
them. Scope and application/service identifier enumeration is an optional feature that can be 
offered by RPs. The enumeration is requested by using a special field in the metadata of a 
request to the RP.  

Service invocation and activation differs depending on the implementation. A service can 
issue periodic updates that can be subscribed using the RId obtained from an RP. 
Rendezvous system will coordinate the formation of the multicast structure that connects the 
subscribers and the service instance. When the process is completed, the client will be able to 
receive data from the service. Now, the service needs to inform the client how requests can be 
sent to the service, which is in the basic case done by periodic advertisements.  

A service can also be contacted directly by publishing a message to a service specific RId that 
the service has previously subscribed. These two approaches can be directly implemented 
with the pub/sub API. Given that a service name and description can be resolved by the RP to 
a RId, the client can, depending on the mode of discovery, either publish a service request 
message or subscribe periodic advertisements from the service itself.  

The former model is desirable because it avoids the overhead of periodic beacons. On the 
other hand, this approach is susceptible to various denial of service attacks. A number of 
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clients can flood the public RId of the service. Given that there are multiple services under the 
same RId (destinations of the multicast structure), there needs to be a way to process the 
response messages. This approach may become challenging when a peer-to-peer service is 
used in which there are millions of nodes in the network that offer the same service.  

The problem with large numbers of recipients can be solved either by aggregating responses 
using RPs or by using anycast communication primitive. Both require changes to the network 
architecture. Anycast is easy to realize given that the multicast graph can be used; however, 
with anycast it is not obvious what metric should be used to select the path that the anycast 
message will travel.  

One way to avoid above problems is to use the first model, i.e., the periodic advertisements 
and combine that with advertisement caching. The RP can act as a proxy for periodic service 
advertisement messages and cache them according to time-to-live value defined in metadata. 
In the first phase, the subscription request to the service RId is not processed as a regular 
subscription but rather the RP simply terminates the subscription and returns the cached 
advertisement profile that includes the public RId of the service.  

In any case, for any interaction to happen between the client and service, the client needs to 
have a response RId that the service can use to publish messages to the client.  
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6 Application Considerations 
It is important to consider application design in the context of the PSIRP architecture. While 
we do not focus on the development of applications per se, this section addresses 
considerations for the design of applications in the context of our architecture. For this, we 
address issues of mapping application-specific identifiers onto our information concepts, 
discuss the issue of API from an application developer's points of view (in contrast to the 
architecture view of Section 3.1) and present a few examples (including our current 
demonstrator) to illustrate what example applications could look like. But we do recognize that 
many more considerations in the application and service space need consideration with a 
paradigm change like the one proposed by the PSIRP architecture. 

6.1 Application Programmer Interfaces 
Although PSIRP builds on entirely different foundations than the current Internet, it is a useful 
exercise to understand how application developers might view it as an increment on the 
current functionality—a major increment, that is. Here the architecture underlying that API is 
not of primary interest. Rather, the focus is on the functionality that will be available to 
application developers at roughly the level of the existing TCP/IP socket API.  

Only a few of the most important communication services are addressed below. Protocols 
required mainly for control-plane functions are neglected. Moreover, many details are left 
unspecified, such as whether to support access control based on the identities of the 
communicating participants.  

A common thread is the use of a self-certifying topology-independent identifier to join the 
communication session, whatever the semantics of the communication service. The self-
certifying identifier (which may be a rendezvous ID) may have to be qualified by an additional 
identifier (a scope ID) for this purpose. The following discussion of different types of services 
assumes that this pair of identifiers has been combined into a single composite identifier.  

6.1.1 1-to-N Message Stream 
This service enables the owner of an ID to publish a stream of messages, to which others can 
subscribe using the ID. A subscriber joining an ongoing message stream receives messages 
from that point onwards. Message delivery is neither reliable nor guaranteed to preserve 
ordering.  

This service is comparable to that offered by UDP over IP multicast. A receiver receives only 
those message streams to which it subscribes and, in addition, the owner of the ID can control 
who can receive these messages via the scoping mechanism. The service is intended to 
support end-user applications such as streaming media and multiplayer games, which 
typically use UDP, and often RTP. These applications tend to be complex, requiring additional 
protocols alongside the real-time message stream.  

PSIRP may use cryptographic techniques to ensure that the received messages were in fact 
published by the owner of the ID.  

The behaviour when the owner of the ID publishes messages under that ID at several different 
hosts is to be determined.  

6.1.2 1-to-1 Bidirectional Connection 
This service provides for connection-oriented communication in the form of a bidirectional 
reliable byte stream. It is intended to be largely compatible with TCP and to support 
applications that require request-response or conversational client-server communication. It 
differs from TCP in that the target of the connection is a topology-independent ID identifying a 
service rather than a host.  
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PSIRP will use cryptographic techniques to ensure that each connection made to an ID is a 
secure communications channel to a service endpoint created by the owner of that ID.  

It would be highly desirable to support connection-oriented anycast when multiple hosts listen 
to the same ID, to allow for scalability, reliability, and DoS resistance.  

6.1.3 1-to-N Document Distribution 
This service provides for highly scalable distribution of content, either immutable or versioned. 
The owner of an ID can publish a byte string of arbitrary length under that ID, ranging from a 
small image on a web page to an entire OS image, followed by any updates to that byte string. 
Anybody subscribing to that ID will receive the most recent version of the published data.  

PSIRP will use cryptographic techniques to ensure that the data received by anybody 
subscribing to an ID was in fact published by the owner of that ID.  

The API may allow a subscriber to additionally receive subsequent updates to the data. 
Alternatively, a separate API might be provided for receiving notifications of updates, so that 
the subscriber can pull new versions adaptively (skipping versions when updates occur in 
rapid succession).  

The behaviour when the owner of an ID publishes different data at different hosts is yet to be 
determined. An appropriate choice, considering these hosts as redundant origin servers that 
presumably replicate data at an application level, would be such that a subscriber receives the 
most recent version published at a host selected by the network, either arbitrarily or possibly 
based on topological criteria, e.g. avoiding inter-domain links where possible.  

As an optimization, it might be of interest to allow publishing of immutable data under an ID 
derived from the data itself.  

6.2 Mapping Application IDs onto Rendezvous IDs 
As already mentioned in Section 4.1, application IDs can be resolved into network rendezvous 
IDs in various ways. While for some applications the AId to RId mapping process is 
immaterial, as long as a resolution mechanism such as a search engine exists, for many 
applications the various pieces of content exchanged are related in such a manner that it 
makes sense to translate such AIds to algorithmically derived RIds, so as to expose these 
relationships to the network. 

As a first example, consider an application producing a stream of data, such as packets of 
consecutive voice samples (as in VoIP). In this case, the AId of each packet could be derived 
from the AId of the voice stream plus a sequence number. These AIds could be transformed 
to a set of algorithmically derived AIds using a function taking as parameters the RId of the 
stream plus the sequence number of the packet. The subscriber could then subscribe to the 
stream RId implying that it should receive all the derived RIds. The network in turn could take 
advantage of this exposition of the relationship between the data for the various purposes 
discussed in Section 4.1. 

As a second example, consider a dynamic web page consisting of some main text and 
multiple embedded objects and links. In this case, the entire page could be identified by a 
single AId and each component could be identified by AIds derived from the main AId by 
adding sequence numbers. By mapping these AIds to an algorithmic set of RIds as above, the 
subscriber could subscribe to the entire page in order to receive all components, without 
having to first receive the main page, parse it, and then retrieve each object. It is also possible 
to generalize this to multiple levels by using a tree of RIds as in Section 4.1, to identify a set of 
pages, the individual pages, sections of each page, and finally the page components 
themselves. 

As a third example, consider a bulk distribution application based on BitTorrent, where the 
content to be distributed consists of a set of separately identified (and verified) blocks, each of 
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which is transmitted as a set of packets, not necessarily in sequence. In BitTorrent there 
already exists a hierarchical convention for the AIds of pieces and blocks, so this could be 
directly mapped to a tree of algorithmically derived RIds, with the RId of the entire publication 
at the root, the RIDs of the pieces at the first level and the RIds of the blocks at the second 
level (and maybe the RIds of individual packets at the third level). 

6.3 Application Examples 
The following sections present two application examples that show the usage of the 
application-level APIs in the context of web and BitTorrent like applications. 

6.3.1 World Wide Web Functionality 
Support for new communication protocols and URL schemes can be added to modern web 
browsers such as Mozilla Firefox as protocol extensions. As such an extension is installed into 
a web browser, the browser will continue working as before except that content such as web 
pages and images can now be fetched using the new protocol and URL scheme the extension 
added support to.  

For this, the web functionality is implemented on top of PSIRP with the help of "psirp:" URL 
scheme. The format of psirp: URL scheme is as follows: 

• psirpURL = "psirp:" [scope identifier] : [rendezvous identifier]  

where [scope identifier] and [rendezvous identifier] are as defined in Section 4.1 of this 
document.  

This URL scheme may be implemented as a Firefox extension, which works by subscribing to 
the content pointed to by the URL from PSIRP. Through the use of advertisement functionality 
within the rendezvous system the web server will detect the presence of subscribers and 
deliver the data of the publication to the Firefox web browser. Alternatively without such 
advertisements the web serve needs to subscribe to delivery requests (equivalent to HTTP 
GET messages). It is assumed that each content item such as a HTML page or an image on a 
web site will form its own publication, i.e., can be referred to by a "psirp:" URL. The "psirp:" 
URLs can be used the same way as any other URL. They can, for example, be typed into the 
browser address bar, they can be used as a "src" attribute in an image tag or as a "href" 
attribute in an anchor tag.  

Although backwards compatibility for web applications can be provided by using the "1-to-1 
Bidirectional Connection" API, the "1-to-N Document Distribution" API might be the most 
interesting of all PSIRP APIs for web developers. This "1-to-N Document Distribution" API 
allows for subscribing to not only the current data but also to the upgrades of it, i.e., it could be 
possible to create self-updating web pages using this feature without resorting to constant 
polling with Javascript.  

6.3.2 BitTorrent-like Content Distribution 
BitTorrent is a peer-to-peer content distribution protocol, in which content downloaders help 
the content originator to distribute the content while they are downloading the content 
themselves. The fact that the burden of content distribution is distributed among the 
downloaders makes BitTorrent scale to large numbers of downloaders. A content originator 
can thus publish content on BitTorrent without worrying about server bandwidth availability, 
even if the published content becomes surprisingly popular.  

To a first approximation, BitTorrent-like scalable content distribution will be straightforward in a 
PSIRP network, even if it contains caches. Content can be published using the PSIRP "1-to-N 
Document Distribution" API. In PSIRP, the same way as in BitTorrent, a content originator can 
publish content without worrying about the load that the publication is going to cause on the 
publisher's own server, since caches will make PSIRP scalable the same way as BitTorrent. 
The first difference between PSIRP and BitTorrent is that in PSIRP not only subscribers, but 
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also caches, can act as additional sources for the data, while in BitTorrent only the 
downloaders can act as additional sources. The second, and more important, difference is 
that the use of the "1-to-N Document Distribution" API will allow publications to be forwarded 
in multicast mode to many subscribers at once, regardless of the source used, unlike 
BitTorrent where data is forwarded in unicast mode.  

In BitTorrent, user participation in content distribution is rewarded by an incentive mechanism 
called tit-for-tat, which tries to ensure that uploading to others results in higher download 
speeds than mere free-riding. PSIRP is currently lacking such an incentive mechanism that 
would reward the subscribers for acting as sources of the parts of the publications they have 
already received. The issue is that the use of the "1-to-N Document Distribution" API breaks 
the direct relationship between the endpoints upon which tit-for-tat is based, therefore the 
subscribers cannot be "punished" if they do not act as sources. Thus, implementing an 
incentive mechanism in PSIRP publish-subscribe environment remains an interesting topic for 
future research.  

Implementing BitTorrent-like functionality is however more complicated for very large files, 
especially without caches. Transferring a very large file as a one single publication using one-
to-many communication might not be the best option. Instead the file might be split into a 
number of sub-publications that would correspond to "pieces" in traditional BitTorrent. One 
master publication containing the list of identifiers of the sub-publications and other metadata 
would then act as ".torrent" file equivalent. Once a downloader receives a piece as a sub-
publication, it may then re-publish the piece under the same rendezvous id. The rendezvous 
process would then connect future subscribers seeking this piece to the downloader, 
assuming that there are no other publishers nearby. Again, the download of each piece can 
be made more efficient by using the one-to-many forwarding capability of the PSRIP network. 
Where flow signalling would normally be used in a one-to-one network, for multicast delivery 
each piece may be further split into low flow rate layers, allowing each client to receive as 
many simultaneous layers as it desires. This option can of course also be combined with 
caching, with the caches serving as sources for any pieces they have already cached. 

6.4 Current Demo 
There are currently two demonstrations available as a result of the work within the 
implementation work package 3. This work implements the node architecture, based on the 
component wheel (see Section 3.4), that is outlined Section 4.2. As basic components, the 
demonstrations implement the publisher and subscriber functions as well as the (intra-domain) 
forwarding function. With that, basic PSIRP scenarios can be implemented, as shown in the 
following subsections.  

6.4.1 Demo Scenario I  
In the current demo, we have three different nodes that are: publisher, forwarder and 
subscriber. This is illustrated in Figure 6.1. The publisher may publish any kind of files, even 
binary content. The 'publish' helper application uses our native pubsub API. The application 
creates a RId for the content and publishes related meta-data in the default scope. In our 
case, the meta-data is forwarded through a forwarding node to the subscriber.  

Once the subscriber receives the meta-data, it initializes a virtual memory object, i.e. an empty 
container, for the content. This empty data container is visible like a normal file in the host's 
directory (/pubsub/...). The directory hierarchy is divided into two levels below the /pubsub 
mount point. The second level directory names the SId and the third level directory the RId 
assigned to the specific scope. Finally, the content is readable from the file that is named by 
default as 'data'.  
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Figure 6.1 – Demonstration scenario I 

Legacy (unmodified) applications are able to open the 'data' file as any normal file. The main 
difference compared to normal file system is that the pubsub file system uses a new kind of 
pager. Normally, the pager takes care of paging memory pages between swap-file system and 
the DRAM. In our case, the paging takes place between DRAM and our FUSE daemon. Now, 
when the application (e.g., the xv media player) opens a file in the pubsub file system and 
tries to access a memory address, a page-fault is created. This page-fault in turn triggers a 
subscription for the missing memory pages. In FreeBSD, each memory page is 4kb. However, 
to support smaller MTUs on the wire we subscribe the pages in 1kb chunks. In practice, the 
page-fault causes the pager to fetch multiple pages that results subscribing multiple chunks 
per page-fault. In other words, we have coupled the virtual memory management and paging 
with on-demand content subscription. This is illustrated in Figure 6.2. 

 
Figure 6.2 – Paging in our demonstration scenario 
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It is also important to note that the current prototype supports the presented zFilter forwarding 
(see Section 4.6.1). However, we do not yet have a working topology manager which makes it 
difficult to demonstrate the zFilter functionality with the current implementation.  

6.4.2 Demo Scenario II  
Typically, when an unmodified application opens a file it reads the content into memory at 
once. From the subscriber viewpoint, all the chunks are stored locally before the application 
views a picture or plays a music file. However, our second scenario demonstrates the on-
demand memory access policy with URLs.  

For this, we implemented an apache web-server at the subscriber side. The apache server 
directly accesses the /pubsub directory. The files in the directory can be expressed as URLs 
that can be given to the music player 'vlc'. The 'vlc' application understands that the content is 
reachable over the network and starts playing the content before it gets all the content. In 
practise, the apache-server reads the file in the /pubsub directory based on the received 
requests.  

The following figure illustrates how we are able to stream music between PSIRP and IP 
networks when there is a apache proxy in-between the networks.  

 
Figure 6.3 – Bridging PSIRP and IP networks 

We are able to demonstrate music streaming with our current prototype. However, the 
prototype does not support any TCP like congestion control functionality in the pubsub 
network. To overcome this problem we limit the rate of the outgoing packet flow to a constant 
rate of 50ms.  
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7 Conclusions 
This report extended our architectural work beyond the initial considerations that were 
presented in D2.2 [PSI2008d]. Based on our design methodology, which foresees a 
combination of bottom-up and top-down approaches, we combined our lessons learned in the 
implementation of a first PSIRP prototype with the continued work on extending the 
conceptual architecture and its main components. This approach has led to a clarification of 
concepts, presented in the design considerations and solutions that you can find in this report.  

The concepts that were initially presented in D2.2, e.g., data and metadata, scoping, and the 
pub/sub communication paradigm, have manifested in clearly formulated information 
concepts, a node and network architecture with well-defined components as well as a refined 
service model. Feasibility of these solutions is represented in an evolving prototype 
implementation of some of the concepts but also in the detailed descriptions of the 
technologies, such as for inter-domain rendezvous, that can now be undertaken a rigorous 
evaluation with respect to scalability and economic feasibility. 

The future work will concentrate on the development of solutions in various areas for which 
considerations have already started. Examples are inter-domain forwarding and topology 
formation as well as solutions for traditional transport functions like error and flow control. The 
solutions for these areas are expected to find entry in the final architecture deliverable of this 
project.  
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8 Terminology 
Application 
identifier  

Any higher-level identifier that applications may use. It is usually mapped 
onto a set of rendezvous identifiers for the data items relating to such 
application identifier. 

Algorithmic 
identifier 

An identifier that is determined algorithmically. It is used for rendezvous but 
also scope identifiers to enable information collections, i.e., sets of 
information items. 

Caching  Process of temporarily storing data that is expected to be useful in the future 
in intermediate network elements. 

Component 
wheel  

The PSIRP layer-less network "stack" design, in which a number of network 
components communicate internally within a node using the 
publish/subscribe paradigm. 

Domain  A managed network that is analogous to an autonomous system. 

Forwarding 
identifier  

An identifier used to associate a rendezvous identifier with a forwarding path.  

Information 
item 

The lowest entities of data being used in the PSIRP network. An information 
item is associated with a rendezvous identifier (RId) and assigned to one or 
more scopes. 

Information 
collection 

A set of information items. An information network forms a specific kind of 
information collection, also called scope. Other information collections can 
be formed via metadata information items, which include pointers to other 
information items. Also algorithmic identifiers can be used to assemble 
information collections, the collection being defined by the algorithm being 
used to determine the individual rendezvous identifiers of the information 
items in the collection. 

Information 
network 

A collection of information items under a single scope. An information 
network is identified by a scope identifier 

Inter-domain 
routing  

Inter-domain routing pertains to data delivery in the global network, typically 
spanning several domains. The inter-domain routing system is configured 
through the rendezvous process and takes into account any inter-domain 
policies in effect.  

Intra-domain 
routing  

Intra-domain routing pertains to data delivery within an administrative 
domain. Intra-domain routing is concerned with local policies.  

Metadata  Data may also have associated metadata, which includes scoping 
information and other useful information either for ultimate receivers or 
network elements. This metadata in itself is data, i.e., it is associated with 
another rendezvous identifier. Metadata may be provided within a publication 
or as a separate data element with a separate rendezvous identifier.  

Network The process of obtaining connectivity with a PSIRP network.  
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attachment  

Publication  A self-contained data unit that has been made available using the publish 
primitive.  

Publisher  An entity that uses the publish primitive to make data available. 

Rendezvous  Rendezvous is the process of matching publishers and subscribers 
according to given rendezvous identifiers and initiating the transfer of data 
over the network within a given scope.  

Rendezvous 
identifier  

An identifier given to an entity by the rendezvous system in order to mediate 
between high-level identifiers, namely application identifiers, and lower-level 
identifiers, namely forwarding identifiers.  

Scope  Scope defines an information network, assembling a collection of information 
items under that scope. A scope is labelled with a scope identifier (Sid). It 
determines the part of the rendezvous system that is used by the network. 
The three typical low-level cases are link local, intra-domain, and inter-
domain. But scope can also be used to map higher-level concepts, like social 
networks, onto particular parts of the rendezvous system.  

Service model  The model that is used by network elements to interface with the network. 
The PSIRP service model includes a low-level API, a channel model and 
higher-level service models 

Subscriber  An entity that uses the subscribe primitive to request certain pieces of data.  

Tussle  Tussle is defined as a conflict of interests, these interests being brought 
forward by players within a given communication scenario, either expressed 
as explicit constraints, requirements or other concepts of concerns. Design 
for Tussle [Cla2002] offered a novel insight for the proper design of such 
systems, i.e., providing guidance as to how a system ought to be designed 
so as to withstand and even incorporate a wide range of tussles.  
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