
Attachment to a Native Publish/Subscribe Network
Jimmy Kjällman

Ericsson Research, Finland
Email: jimmy.kjallman@ericsson.com

Abstract—
In this paper we examine how network attachment can be

handled in a system where all communication, both on a data link
and in a network, is based on the publish/subscribe paradigm
instead of the traditional send/receive model. We present and
discuss an early clean-slate solution to the problem of establishing
and maintaining network connectivity between nodes in a secure
and efficient way. The solution includes a basic protocol for
pub/sub-based attachment, which addresses certain pertinent
security challenges and conforms with the principle of receiver-
driven communication. In addition, we report initial experiences
from implementing the concepts outlined in our protocol design.

I. INTRODUCTION

In order to communicate in a network, a node must be
attached to at least one other node that can provide access
to further nodes. We use the term network attachment of the
procedure, and the related function, that deals with setting up,
maintaining, and renewing this kind of state, and thus enables
network connectivity for a node. Operations handled in this
procedure include discovery of potential attachment points,
authorization of joining nodes to use services in the network,
as well as configuration of entities involved in attachment.

In currently prevalent networks, data link layer technologies
are used for network access, and on top of those, the Internet
Protocol (IP) handles network layer connectivity. On each
layer in these existing systems, communication is usually boot-
strapped using mechanisms that are based on the traditional
communication model with send and receive primitives. In this
work, however, we investigate network attachment in a novel
networking architecture where protocols in the network layer,
and partially also in the data link layer, have been designed
according to the publish/subscribe (pub/sub) paradigm [1].

A major difference between the send/receive and pub/sub
models is that in the former paradigm, senders can by default
get any data sent to any destination on the link or in the
network, while in an ideal pub/sub system, a published piece
of data reaches only recipients that have explicitly requested it
by subscribing to it. A consequence of the send/receive model
is that senders can easily and with a very low cost generate
network traffic that is unwanted by receivers, and which can be
used for malicious purposes, such as creating denial-of-service
(DoS) attacks. This is the situation currently in the Internet
as well. But by designing a network that is natively based
on pub/sub, it could be possible to avoid such problems [2].
Another important benefit of pub/sub is also that it can be
used for enabling information-centric networking.

The Publish-Subscribe Internet Routing Paradigm (PSIRP)
EU FP7 is a project that aims at building this kind of a
complete internetworking architecture based on using pure
pub/sub and principles that mandate information-centric and
receiver-driven design [3]. In this system, most protocols and
components found in current IP-based networks have to be
completely redesigned. One of these components is, of course,
the network attachment function that we investigate in the
following sections.

This paper is structured as follows. In Section II, we briefly
present current attachment mechanisms. In Section III, we
describe in more detail the problem field, and specify the scope
of the design and implementation which we will present and
discuss in Sections IV and V. Finally, we conclude our results
and discuss potential future work items in Section VI.

II. RELATED WORK

Existing network attachment mechanisms can be found in
current IP-based networks and in link layer access technolo-
gies. Especially the latter ones have a major role in performing
authentication of nodes and authorizing them to use networks
through attachment points. Examples of such systems are
IEEE 802.11 [4] with EAP-based 802.1X [5] authentication,
3G/UMTS networks where AKA is used (e.g. [6]), and mech-
anisms based on PPP [7] together with CHAP [8].

For example, if we take a closer look at attachment proce-
dures in IEEE 802.11, especially in the infrastructure mode,
we see that a node seeking access first scans for access
points, and thus learns basic information about them. Then,
it initiates attachment by sending requests for authentication
and association to a chosen access point. The latter phase
implies configuring the access point to send and receive
frames in its local network on behalf of the wireless station
attached to it. After this, stronger authentication of the joining
node, as well as an exchange of cryptographic keys, can be
performed. The authentication phase may involve an AAA
backend that decides if data traffic between the joining node
and the network is allowed. Notably, control traffic between
the joining node and the AAA system can be securely tunneled
(e.g. RADIUS over EAP-TTLS).

As a result of the above procedure, a node gets limited
network access on the link layer. The next step is usually
then to increase communication scope to other networks,
such as the Internet. In IP hosts, a minimum requirement for
network layer communication is to have an IP address for
a network interface, but also other addresses and parameters
are usually needed. In IPv4 networks this information can be



acquired by using DHCP [9]. In IPv6, on the other hand, router
advertisements [10] can provide most configuration data. A
related issue is translation of network layer addresses to link
layer addresses in order to send data to the next hop. The
Address Resolution Protocol (ARP) [11] and IPv6 neighbor
discovery are normally used for dynamically coupling the two
layers with each other.

An alternative to employing separate attachment protocols
in each layer is to utilize a cross-layer design. This approach,
presented in [12], and further explored in a number of other pa-
pers (e.g. [13]–[15]), has some advantages compared to using
separate mechanisms on each layer. Firstly, it can be used to
reduce the number of roundtrips in an attachment procedure by
allowing several operations to run in parallel within the same
messages. Delegation of some tasks from a client to an access
node can also be used for achieving better efficiency. Secondly,
security is enhanced if, for instance, authentication of an
entity providing configuration information covers both the link
and network layer instead of being handled by two unrelated
mechanisms. Moreover, cryptographic puzzles can be used
for coping with DoS, and a Diffie-Hellman key exchange
in the beginning of a negotiation yields keys that can be
used for confidentiality and integrity protection. Notably, these
protocols can be used as frameworks for existing protocols,
such as DHCP, AAA protocols, MobileIP, and MLD.

We can also note that in pub/sub overlay networks, the
attachment issue has been discussed in relation to mobility of
nodes. In essence, this means that subscription and publication
states need to be updated when a node changes its point of
attachment. This problem field has been examined for example
in [16]–[18].

III. DEFINING THE PROBLEM

In the following sections we will explore how network
attachment can be handled in a novel networking architecture.
The basic building blocks used in the design are the publish
and subscribe primitives, in addition to a simple link layer
mechanism that provides the capability to send and receive
messages over a physical medium.

The goal of network attachment is to make it possible for
nodes to use publish and subscribe functions on data in a
network through attachment points. Hence, the focus of this
work is on how to use the pub/sub communication model
between nodes on the same data link, as well as internally in
a node, in designing a network attachment protocol that can
be used to fulfill that goal. Data communication in a network
once attachment is done is out scope for this paper, as are all
details related to the physical, MAC, and LLC layers.

Next, we identify a few basic attachment scenarios and oper-
ations involved in a typical attachment procedure. In addition,
we describe what security features and other properties we
consider important in this context, and conclude this discussion
with a problem statement.

A. Basic Attachment Scenarios
In the simplest case, only two nodes are involved in network

attachment, with one node providing the other one access to a

network. A situation where a single node, for example a laptop
computer, accesses a local network or the Internet through a
dedicated access node, such as a wireless access point, can be
described as an asymmetric attachment scenario. A different
kind of setting is, for instance, an ad hoc network. There, nodes
form networks that can be joined together at attachment, or
split as nodes detach. This model we call a symmetric scenario.
Furthermore, an attachment procedure can occur over either a
wired or wireless link. The former ones are often of a switched
type, while the latter ones are broadcast media.

For simplicity, we will here focus on the asymmetric sce-
nario and also put more weight on the broadcast case, although
our concepts could be usable in other settings as well. We
will also concentrate on communication between two nodes
attaching directly to each other, and leave external entities,
such as nodes belonging to authentication, out of our scope.

We should also note that in the situation when a node
changes from one attachment point to another, we face the
problem of mobility. However, this is another issue which is
out of scope for this paper.

B. Operations in Attachment

The following operations are commonly found in attachment
procedures, and therefore they are also taken into account in
this work.
• Discovery and selection of attachment points. Espe-

cially in wireless scenarios, a node needs to find other
nodes that can be used for network access, and learn some
basic configuration data and other useful information
about them.

• Authentication and authorization. Authorization to use
a network can be based on verifying the identity of a
node, or on negotiations about a contract defining services
and compensation for them.

• Configuration. A central operation in network attach-
ment is to exchange information that is used for setting
up entities in order to enable communication. This infor-
mation includes both communication parameters and data
related to setting up security associations.

C. Security and Other Properties

The network attachment mechanism should also provide
some degree of protection against security threats that are
relevant in this context. Since preventing DoS attacks is a
major argument for choosing the pub/sub model in the first
place, this issue must also be considered in the attachment
design.

Another significant threat is the possibility of receiving
malicious configuration data from unauthentic messages. How-
ever, we have made the assumption that opportunistic security
is employed by default. In other words, a node should be able
to communicate with any attachment points even without being
able to initially verify their identities.

In addition, we want our mechanism to allow autoconfigu-
ration of nodes, and the design should to some extent address
demands for resilience, efficiency, and extensibility.



D. Problem Statement

In conclusion, we focus on designing a network attachment
protocol using the pub/sub communication model between two
nodes, namely an access node and a client, directly over a
broadcast data link. We also want to convey essential config-
uration data, as well as information needed for authorization,
as part of the attachment process. Moreover, we explore some
submechanisms that aim at making the design more resistant
to denial-of-service and message forgery attacks.

IV. DESIGN

A. Communication Model and Architecture

To begin with, we outline the publish/subscribe based
communication model and architecture which we utilize when
designing the network attachment function. This architecture
is similar to the one found in [2].

In our pub/sub model, single pieces of data, as well as chan-
nels through which more than one data item can be conveyed,
are represented by publications tagged with identifiers (IDs).
An entity, for example an application, can thus subscribe to
an ID corresponding to the data it wants. If another entity
has published, or will publish, data with that identifier, it is
delivered to the subscriber.

In addition, the identifier space is expected to be large
enough and that IDs can be generated randomly. These IDs
can be carried as labels in the headers of packets sent on links.

Another assumption is that each node participating net-
working has a mechanism for dispatching publications both
between node-internal entities, as well as interfaces to external
entities. The former group includes, for instance, applica-
tion processes, while send and receive functions provided
by network interface cards belong to the latter group. This
mechanism can store publications and subscriptions, and push
publications to subscribers. In other words, it represents a
blackboard design pattern. For example, it can be implemented
in a node’s operating system kernel, as a user space applica-
tion, or partially even inside a network interface card.

Further on, we assume that this kind of a system is used for
delivering messages between two network attachment protocol
machines located in two nodes on the same link.

B. Bootstrapping Communication

Next we discuss how a control channel for a network
attachment procedure can be set up, starting from the very
first protocol message.

1) Delivering the first message: The first issue to be
handled in a network attachment procedure is bootstrapping
communication between two nodes. In our case, it means that
a node needs to be able to publish data subscribed by another
one, thus making it possible to deliver the first message.

An intuitive approach to bootstrapping is that nodes provid-
ing access to others initially need to reveal some information
about themselves to clients. This information can include
basic configuration parameters, a description about services
provided and policies mandated by the access node, and the
identity of the access node or network behind it. In addition,

it should contain an identifier that can be used by clients for
initiating an attachment procedure with the access node.

Two different approaches for conveying this information to
clients can be identified:

1) An access node publishes information about itself, but
does not spontaneously send it out on the link. Instead, it
subscribes to subscription messages published by clients.
Clients seeking attachment points publish and broadcast
explicit subscriptions, tagged with an ID known to ac-
cess nodes, who then send their information in response.

2) An access node publishes information about itself with
a well-known or preshared identifier, and continuously
broadcasts it onto a link with certain intervals. Clients
seeking attachment points subscribe to this identifier
internally and receive the data from the link.

The first approach is similar to sending probe requests and
responses in IEEE 802.11, or to router solicitations in IPv6.
The second method is, in turn, analogous to sending 802.11
beacons and unsolicited IPv6 router advertisements.

2) Dealing with denial-of-service: The first method above,
which is based on explicit subscriptions, has the benefit that
a node can acquire the information it needs immediately,
without having to wait for the next spontaneous broadcast
from an access node. Compared to the second solution, it
also implies that less traffic is sent on a link when no nodes
need information from the access node. However, on the
downside, it requires that an access node has a subscription to
an identifier all the time, which could be utilized in denial-of-
service attacks. Hence, additional protection, such as limiting
the amount of resources an access node uses for serving
subscribers of the initial data, might be needed.

In contrast, the second approach addresses the DoS problem
mentioned above by allowing clients to subscribe to network
information messages only when they have a need to find new
attachment points. Unfortunately, this still does not completely
remove the need for a common predistributed or global ID to
bootstrap communication.

The temporary channel ID to which multiple nodes can
send attachment initiation messages can also open up another
possibility for DoS. Clients could make an access node create a
lot of state by publishing a large number of initiation messages
using that ID. In this case, one possible countermeasure could
be to include a cryptographic puzzle in the first message sent
by an access node. The conceptual idea here is that a client
should invest some computational resources by solving the
puzzle before being able to even learn what the identifier
subscribed by the access node is. In this way, the access node
should be able to know that a client is committed to attachment
when it receives an initiation message and creates state specific
to the client. In existing protocol designs, puzzles are used for
example in [19] and [14].

However, since a puzzle introduces a delay in the attachment
procedure, and since different devices have different comput-
ing abilities [13], the use of puzzles may need to be limited.
For example, if an access node is capable of serving new
clients without problems, puzzles might not be needed at all.



But if it detects that an attack might be going on, puzzles (or
other countermeasures) can be introduced and their difficulty
can be increased. At the same time, IDs used for initiation
also need to be updated frequently. On the other hand, this
could in turn be used by attackers to increase resource usage
in both access nodes and clients.

Nevertheless, if puzzles are employed, a client may choose
to solve a puzzle after making a decision to initiate attachment
with a particular access node. Alternatively, it can compute
solutions opportunistically for faster attachment. Again, the
resources used for that should be limited, because otherwise
a malicious access node could send out very difficult or
unsolvable puzzles and make a client do unnecessary work. An
additional issue here is also that puzzle solutions and initiation
IDs can expire, so clients should ensure that they have fresh
enough data available when they decide to join a network.

C. The Attachment Procedure

1) Initiating attachment: So far we have discussed how a
client gets the first message from an access node. In fact, a
single message could in some cases carry all relevant configu-
ration information a node attaching to a network needs to know
in order to be able to publish and subscribe data in a network.
If attachment to a network does not require authentication,
compensation contract negotiations, key exchanges, or other
operations that take place over several messages, only this
first step would be required. However, we assume that in many
scenarios an exchange that comprises several messages need
to be supported, and therefore we must also define how more
messages can be delivered between two nodes.

From the first message published by the network attachment
function in an access node, a client can learn a channel
identifier that can be used for contacting that attachment point.
Next, the client should publish a message with that identifier
in order to initiate attachment.

This initiation message can contain a request to become
authorized to use network services and to get configuration
parameters from the network, as well as information about the
node’s identity, timestamps, proof that a puzzle was solved by
the joining node, etc. In addition, it contains a subscription to a
return identifier. Correspondingly, the access node that receives
this message sends its own return ID in its first response.

2) Subscribing to return identifiers: As a conclusion, return
IDs are required for creating two-way communication chan-
nels, since network attachment functions need to know what
IDs have been subscribed by their counterparts. Consequently,
a couple of design alternatives can be identified:

1) Return identifiers can be static channel IDs, i.e., each
protocol message in one direction has the same ID.

2) Return identifiers can be different in each message, and
the next ID a node is willing to receive is explicitly
included in every message.

3) Return identifiers can be channel IDs that are computed
algorithmically and change as a function of time.

4) Return identifiers can be different in each message, and
the next IDs are computed algorithmically.

Option 1 above is the most simple solution, but using a static
identifier to which data can be sent by any node at any time can
again cause DoS problems. On a broadcast link, the channel
ID is very easy to learn through passive eavesdropping, even
if it is originally sent encrypted from one endpoint to another.
Then, it could be used by other nodes to send traffic directly
to the subscriber of that ID.

Another simple approach is found in option 2. In this case,
each published message includes a return identifier that the
publisher subscribes to, and that then the publisher of the next
message could use. While this would mean that a node would
have to store only one ID that its counterpart has subscribed
to, it would also introduce an overhead in every message. This
mode also assumes that nodes take turns in sending messages,
which is not always true, especially in the case of spontaneous
data request and updates that might take place after running
the initial attachment exchange.

In option 3, proposal 1 has been modified so that a channel
ID is valid only for a limited period of time. In that case, a
temporary ID could still be eavesdropped and possibly used
for malicious purposes, but during the lifetime of a long-lived
and low-traffic control channel, probably most of the time
IDs learned in this way are invalid. A requirement for using
this approach is that publishers and subscribers are sufficiently
synchronized. They must also update their subscriptions even
when there is no traffic on the control channel.

Finally, option 4 is a modification of proposal 2. Here,
each message has its own, unique identifier, but these IDs
are computed algorithmically when needed.

Notably, the latter two proposals utilize the concept of
algorithmically generated identifiers. In order to bootstrap
such an ID sequence, an algorithm and some parameters to
it, such as seeds for random number generators or keys for
cryptographic functions, are included in the payload of an
initial message instead of an explicit identifier.

In previous work, algorithmic pseudo-random identifiers
have been used for instance for protecting the privacy of
users in network communication [20]. In that context, pseudo-
random IDs should be possible to produce and tie to each other
only by a limited set of entities. We use similar techniques here
for creating unique IDs for messages, and to achieve some
level of protection against denial-of-service. The latter goal is
reached if only a small number of nodes, preferably only the
ones participating in the attachment procedure, know the exact
identifier sequence. This implies that the message in which the
data needed for computing the sequence should be encrypted
with a secret shared by only those two nodes. Alternatively, in
some situations we could just accept that some nodes present
in a broadcast medium when that message is exchanged might
know that data, but those who have appeared later do not.

3) Using the data exchange framework: We have now
described how an access node and a client can establish a
two-way channel for communication between each other. This
channel can be used for exchange of information in a stateful
configuration procedure. In order to achieve extensibility, the
framework should allow different operations to put their data



Fig. 1. Network attachment message exchange example.

in custom fields in attachment protocol messages.
One particular function that can be part of an attachment

procedure is authorizing a node, and a user behind that node,
to use services in the network. A common way to do this
is through authentication, that is, verification of the node’s
(or user’s) identity. Another possibility is to allow previously
unknown entities to negotiate contracts about services and
compensation for them. A contract can then be referred to
later, when publishing and subscribing data in the network.

Another operation that we also have already mentioned
is providing configuration information to a client. In the
PSIRP architecture [3], identifiers used by the rendezvous and
forwarding functions are examples of that kind of data.

In conclusion, an initial message exchange can be performed
over the control channel in order to authorize a node for access
and provide it with configuration data. Later on, this data can
be updated if both the access node and the client maintain
state for the channel.

D. A Sample Message Exchange

Figure 1 shows an example of a network attachment mes-
sage exchange between two nodes. In the figure, A represents
an access node and B a client. Here, the selected bootstrapping
scheme is based on periodic broadcasting, and the return ID
subscriptions use algorithmically generated sequences. Below
we explain what operations take place in this procedure.

In step 1, the network attachment (NA) function in node
A subscribes internally to identifier I used for attachment
initiation. In step 2, A publishes an advertisement message
(A0) with identifier A*. If needed, some of the information in
that message, especially the subscription to I, can be encrypted
using data (X) protected by a cryptographic puzzle. Message
A0 is then periodically broadcasted on the link, possibly with

updated data (e.g. timestamps, puzzle). This also implies that
A’s blackboard has been configured so that network interfaces
(NIC) subscribe to messages tagged with A*.

Step 3 shows node B’s NA function subscribing to identifier
A*, which can occur for instance when it learns that a link
has become available. Based on the information received from
node A, B can then choose to start an attachment negotiation
with A. Subsequently, B subscribes to a return ID sequence
(ABn) in step 4, and publishes an initiation message (B0) using
identifier I in step 5. In the message payload, the subscription
to (ABn) is indicated, as well as data that A can use for making
decisions about authorization.

When node A receives the message B0, it can create state for
the new node, i.e., B. Similarly to B, A subscribes to a return
identifier sequence (BAn) in step 6. In step 7, A publishes
a message (A1) tagged with AB0, i.e. the return identifier
currently subscribed by B. In this message, the A includes
its own return identifier(s), as well as other data that is part
of the initial negotiation.

Now B can send the following message (B1) in the message
exchange using identifier (BA0) (step 8). This initial attach-
ment procedure can then continue in a number of protocol
messages, depending on what operations take place.

Finally, when the initial exchange is complete, A can send
configuration data, as well as, e.g., a service and compensation
contract to B (message Aj in step i). After that, the established
channel may remain and be used for data updates.

E. Fault Tolerance and Security

What is still missing from the above model is fault tolerance
and additional security features. Firstly, in order to cope with
packet loss, message retransmissions are needed. For instance,
when publishing a attachment protocol message, a timer can
be set, and if there is no reply to it even though an operation
expects one, the same message is sent out again.

Secondly, for additional security, one option could be
to employ asymmetric cryptography. A Diffie-Hellman key
exchange could be performed early in the protocol, with
appropriate signatures [21]. The benefit of this would be
that encryption and message authentication could be easily
handled using the shared secret provided by the exchange. By
encrypting the payload in protocol messages, for example con-
figuration parameters and subscription data could be protected
from unauthorized parties. And with integrity protection of
messages, malicious nodes would not be able to inject their
own information into the control channel.

Using public key cryptography is, however, computationally
quite expensive. Alternative protection methods might there-
fore be needed. For example, preshared keys could be utilized
similarly as in many existing systems. On the other hand, if
we want to avoid off-band data exchanges, and can do with
only ensuring that our counterpart remains the same during
communication, hash chain based approaches for message au-
thentication present an attractive option. Such methods include
for example TESLA [22] and its variations. The problem with
those is that they imply delayed authentication, that is, a hash



chain value used for creating a message authentication code
for some messages is revealed in a later message. The state
of a network attachment function still should not be changed
using information from messages not yet authenticated. This
can be particularly problematic in a setting where messages
are exchanged in a request-response fashion, because then
messages buffering is not an option.

V. IMPLEMENTATION

In order to test the concepts described in previous sections, a
network attachment daemon has been implemented in Python.
In that implementation, link layer communication is based on
broadcasting Ethernet frames through raw sockets. Messages
are conveyed between applications and link interfaces via
an internal blackboard that can store subscriptions, cache
publications, and dispatch data to registered entities. That
dispatching system is implemented as a hash table that maps
identifiers to function pointers. These simple mechanisms are
then used by a network attachment protocol implementation
that follows the message sequence in Fig. 1. ID sequences are
in this implementation created by hashing a concatenation of
a shared key and a previous ID.

Currently the performance and architecture of this prototype
are suboptimal. Nonetheless, the experiences from developing
and testing show that the concepts presented in Section IV
are can indeed be realized in actual mechanisms. Compared
to existing protocols, the amount of data that the exchange
require seems to be relatively high, much due to the use of
long identifiers. On the other hand, the number of roundtrips
can indeed be reduced significantly by performing attachment
operations, such as authentication and parameter configuration,
inside a single initial message exchange instead of doing them
in separate steps on each layer. The exact message counts
still depends on the operations that actually takes place over
the message exchange framework, which currently makes a
comparison to existing systems difficult.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a novel design for network attach-
ment using the publish/subscribe paradigm. We identified a set
of operations that usually need to be handled in an attachment
procedure, and created a message exchange framework over
which those operations can be performed.

Some challenges were encountered that are related to per-
forming node-to-node communication using principles for in-
formation networking and receiver-driven design. Other issues
included how to prevent opportunities for denial-of-service, as
well as how to deal with other aspects of security. This lead
to discussions about alternatives for solutions to these issues.
A further analysis on these topics is provided in [23].

Because the designed mechanism was designed to be used
in conjunction with a complete pub/sub-based networking
architecture, such as PSIRP, future work in this area consists
of aligning the design with the PSIRP [3] architecture, and
integrating the current implementation with the lower layer
PSIRP prototype [24]. This means defining interfaces to other

components, and using actual PSIRP identifiers instead of just
generic labels. In addition, issues including security, mobility,
ad hoc networking, compensation-based authorization mech-
anisms, and implementation performance will be addressed
more thoroughly.

ACKNOWLEDGMENT

Thanks to Sasu Tarkoma, Jukka Ylitalo, Christian Esteve,
Teemu Rinta-aho, Pekka Nikander, people in the PSIRP
project, and others who provided support during this work.
This work was supported by the EU FP7 PSIRP project under
grant INFSO-ICT-216173.

REFERENCES

[1] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Computer Surveys, vol. 35, no. 2,
pp. 114–131, 2003.

[2] M. Särelä, T. Rinta-aho, and S. Tarkoma, “RTFM: Publish/subscribe in-
ternetworking architecture,” in ICT-MobileSummit 2008, Sweden, 2008.

[3] M. Ain et al., “PSIRP deliverable D2.2: Conceptual architecture of
PSIRP including subcomponent descriptions, version 1.1,” 2008.

[4] “IEEE Std 802.11-2007: Wireless LAN medium access control (MAC)
and physical layer (PHY) specifications,” 2007.

[5] “IEEE Std 802.1X-2004: Port-based network access control,” 2004.
[6] “3GPP TS 33.102 V8.0.0, security architecture (release 8),” 2008.
[7] W. Simpson, “The point-to-point protocol (PPP),” RFC 1661, 1994.
[8] W. Simpson, “PPP challenge handshake authentication protocol

(CHAP),” RFC 1994, 1996.
[9] R. Droms, “Dynamic host configuration protocol,” RFC 2131, 1997.

[10] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor
discovery for IP version 6 (IPv6),” RFC 4861, 2007.

[11] D. Plummer, “Ethernet address resolution protocol: Or converting net-
work protocol addresses to 48.bit ethernet address for transmission on
ethernet hardware,” RFC 826, 1982.

[12] J. Arkko, P. Eronen, P. Nikander, and V. Torvinen, “Secure and efficient
network access,” in DIMACS Workshop on Mobile and Wireless Security,
USA, 2004, (Extended abstract).

[13] J. Arkko, P. Eronen, H. Tschofenig, S. Heikkinen, and A. Prasad, “Quick
NAP - secure and efficient network access protocol,” in ASWN 2006:
6th International Workshop on Applications and Services in Wireless
Networks, Germany, 2006.

[14] S. Heikkinen, M. Priestley, J. Arkko, P. Eronen, and H. Tschofenig, “Se-
curing network attachment and compensation,” in WWRF#15: Wireless
World Research Forum Meeting, France, 2005.

[15] U. Meyer, Ambient Networks Phase 2, Technical Annex to D3-G.1:
Design of Composition Framework. Ambient Networks, 2006, ch.
Report 4: SNAP: A symmetric version of QNAP.

[16] L. Fiege, F. C. Gärtner, O. Kasten, and A. Zeidler, “Supporting mobility
in content-based publish/subscribe middleware,” in ACM/IFIP/USENIX
International Middleware Conference, Brazil, 2003.

[17] V. Muthusamy, M. Petrovic, D. Gao, and H.-A. Jacobsen, “Publisher
mobility in distributed publish/subscribe systems,” in 4th International
Workshop on Distributed Event-Based Systems (DEBS’05), USA, 2005.

[18] S. Tarkoma and J. Kangasharju, “On the cost and safety of handoffs in
content-based routing systems,” Computer Networks, vol. 51, no. 6, pp.
1459–1482, 2007.

[19] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson, “Host identity
protocol,” RFC 5201, 2008.

[20] J. Arkko, P. Nikander, and M. Naslund, “Enhancing privacy with shared
pseudo random sequences,” in 13th International Workshop on Security
Protocols, UK, 2005.

[21] H. Krawczyk, “SIGMA: the ’SIGn-and-MAc’ approach to authenticated
Diffie-Hellman and its use in the IKE protocols,” in 23rd Annual
International Cryptology Conference, USA, 2003.

[22] A. Perrig, R. Canetti, J. Tygar, and D. Song, “The TESLA broadcast
authentication protocol,” RSA CryptoBytes, vol. 5, no. 2, pp. 2–13, 2002.

[23] J. Kjällman, “Network attachment to a publish-subscribe link,” Master’s
thesis, Helsinki University of Technology, 2009.

[24] P. Jokela et al., “PSIRP deliverable D3.2: Implementation plan based on
conceptual architecture,” 2008.


